

Estimación económica de efectos por variabilidad de parámetros ambientales en la producción de granos básicos, zona oriental, El Salvador 2013-2018

Estimación económica de efectos por variabilidad de parámetros ambientales en la producción de granos básicos, zona oriental, El Salvador 2013–2018

DIRECCIÓN NACIONAL DE INVESTIGACIÓN Y PROYECCIÓN SOCIAL ÁREA ECONOMÍA, ADMINISTRACIÓN Y COMERCIO 2019 UNIVERSIDAD DOCTOR ANDRÉS BELLO DIRECCIÓN DE INVESTIGACIÓN Y PROYECCIÓN SOCIAL ÁREA: ECONOMÍA, ADMINISTRACIÓN Y COMERCIO

Estimación económica de efectos por variabilidad de parámetros ambientales en la producción de granos básicos, zona oriental, El Salvador 2013–2018.

©2020, Universidad Doctor Andrés Bello

Primera Edición 2020

Código Institucional: SM/INV/B/2019

Publicación correspondiente a la investigación realizada en la Sede Universitaria de San Miguel, derivada de la monografía con registro ISBN 978-99961-65-28-3.

La reproducción total o parcial está autorizada, siempre y cuando se cite la fuente de forma adecuada.¹

Investigadores:

Milton José Martínez Ventura, Mario René Rivas Domínguez, Marjorie Gabriela Molina Salazar.

Con la cooperación técnica de:

José Domingo Romero Chica y Samuel Alejandro Cano (Sede San Miguel), Oscar Antonio Peña Rodas (Sede San Salvador).

¹ Dirigir correspondencia a: Dr. José Roberto Hernández Rauda, Director de Investigación y Proyección Social, Universidad Doctor Andrés Bello, 1ª Calle Poniente y 41 Av. Norte #2128, Col. Flor Blanca, San Salvador, El Salvador. Casilla de correo electrónico: roberto.rauda@unab.edu.sv, Tel. (503) + 25107455

Contribuciones extra-institucionales en el proyecto:

Observatorio Ambiental del Ministerio de Medio Ambiente y Recursos Naturales (MARN), por proporcionar archivo digital con base de datos de parámetros meteorológicos: precipitación, temperatura y humedad relativa, para el periodo 2013 a 2018.

Héctor Reynaldo Deras Flores, Gerencia de Investigación y Desarrollo Tecnológico del Centro de Tecnología Agropecuaria y Forestal "Enrique Álvarez Córdova" (CENTA) del municipio de San Juan Opico; además del Director y Técnicos de la Agencia de Extensión del CENTA de San Miguel, por proporcionar información sobre ubicación de parcelas de cultivos y contacto de referentes de los sitios visitados.

Martin Rapilly, Profesor de Geografía de la Universidad Autónoma de Santo Domingo, República Dominicana, por la asesoría técnica.

CONTENIDO

PRÓLO	GO		i
RESUM	1EN		iii
ABSTR	АСТ	Γ	V
1. INTR	ODI	UCCIÓN	1
2. MÉT	ODO	OS	17
2.1.	Ge	neralidades	17
2.2	Zor	nas de estudio	17
2.2.	.1	Zona oriental	18
2.3	Ins	umos utilizados	22
2.3.	.1	Capas vectoriales (proyecto de tecnología UNAB 2019)	22
2.3.	.2	Información sobre cultivos, rendimiento y precios	35
2.3.	.3	Base de datos de temperatura, humedad relativa y precipitación de	el
Obs	serv	atorio Ambiental	35
2.4	Tra	tamiento de la información	35
2.4.	.1	Base de datos de temperatura, humedad relativa y precipitación	35
2.4.	.2	Áreas estimadas de cultivos maíz y arroz	37
2.4.	.3	Rendimiento potencial y precio promedio anual	37
3. RESI	ULT	ADOS	38
3.1	Na	acional	38
3.1.	.1	Mapas nacionales de precipitación	39
3.1.	.2	Mapas nacionales de temperatura	45
3.1.	.3	Mapas nacionales de humedad relativa	51
3.1.	.4	Análisis de correlación nacional	57
3.1.	.5	Modelos de regresión lineal anuales por cultivo	69

	3.1.6	Análisis de variación de parámetros ambientales, áreas y precios del
	maíz y	arroz a nivel nacional70
	3.1.7	Estimación económica de la producción nacional de arroz y maíz 80
3	3.5 Zo	ona Oriental82
	3.5.1	Mapas de precipitación82
	3.5.2	Mapas de temperatura88
	3.5.3	Mapas de humedad relativa94
	3.5.4	Análisis de correlación, zona oriental
	3.5.5	Modelos de regresión lineal, zona oriental
	3.5.6	Análisis de variación de parámetros ambientales, áreas y precios del
	arroz y	maíz, zona oriental114
	3.5.7	Estimación económica de la producción de maíz y arroz, zona orienta
4.	DISCUS	IÓN120
5.	CONCL	JSIONES
6.	REFERE	ENCIAS

INDICE DE FIGURAS

Figura 1. Morfología de la planta de maíz	2
Figura 2. Etapas fenológicas del cultivo de maíz	3
Figura 3. Morfología de la planta de arroz	6
Figura 4. Etapas fenológicas del cultivo de arroz	7
Figura 5. Mapa nacional de zonas de estudio	17
Figura 6. Mapa de Municipio muestreado, Zona Oriental	18
Figura 7. Ortomosaico 1: caserío Casamota, cantón El Brazo, municipio de San	
Miguel	19
Figura 8. Ortomosaico 2: caserío Casamota, cantón El Brazo, municipio de San	
Miguel	19
Figura 9. Ortomosaico 1: cantón Miraflores, municipio de San Miguel	20
Figura 10. Ortomosaico 2: cantón Miraflores, municipio de San Miguel	20
Figura 11. Ortomosaico 3: cantón Miraflores, municipio de San Miguel	21
Figura 12. Ortomosaico 4: cantón Miraflores, municipio de San Miguel	21
Figura 13. Ortomosaico 1: caserío Las Lomitas, cantón El Volcán, Municipio de	
San Miguel	21
Figura 14. Capas vectoriales utilizadas	22
Figura 15. Estimación anual de áreas por cultivo	22
Figura 16. Mapa nacional, área estimada cultivo de maíz, 2013	23
Figura 17. Mapa nacional, área estimada cultivo de arroz, 2013	24
Figura 18. Mapa nacional, área estimada cultivo de maíz, 2014	25
Figura 19. Mapa nacional, área estimada cultivo de arroz, 2014	26
Figura 20. Mapa nacional, área estimada cultivo de maíz, 2015	27
Figura 21. Mapa nacional, área estimada cultivo de arroz, 2015	28
Figura 22. Mapa nacional, área estimada cultivo de maíz, 2016	29
Figura 23. Mapa nacional, área estimada cultivo de arroz, 2016	30
Figura 24. Mapa nacional, área estimada cultivo de maíz, 2017	31
Figura 25. Mapa nacional, área estimada cultivo de arroz, 2017	32
Figura 26. Mapa nacional, área estimada cultivo de maíz, 2018	33
Figura 27. Mapa nacional, área estimada cultivo de arroz, 2018	34
Figura 28. Mapa nacional de precipitación, 2013	39
Figura 29. Mapa nacional de precipitación, 2014	40

Figura 30.	Mapa nacional de precipitación, 2015	41
Figura 31.	Mapa nacional de precipitación, 2016	42
Figura 32.	Mapa nacional de precipitación, 2017	43
Figura 33.	Mapa nacional de precipitación, 2018	44
Figura 34.	Mapa nacional de temperatura, 2013	45
Figura 35.	Mapa nacional de temperatura, 2014	46
Figura 36.	Mapa nacional de temperatura, 2015	47
Figura 37.	Mapa nacional de temperatura, 2016	48
Figura 38.	Mapa nacional de temperatura, 2017	49
Figura 39.	Mapa nacional de temperatura, 2018	50
Figura 40.	Mapa nacional de humedad relativa, 2013	51
Figura 41.	Mapa nacional de humedad relativa, 2014	52
Figura 42.	Mapa nacional de humedad relativa, 2015	53
Figura 43.	Mapa nacional de humedad relativa, 2016	54
Figura 44.	Mapa nacional de humedad relativa, 2017	55
Figura 45.	Mapa nacional de humedad relativa, 2018	56
Figura 46.	Mapa de precipitación, zona oriental, 2013	82
Figura 47.	Mapa de precipitación, zona oriental, 2014	83
Figura 48.	Mapa de precipitación, zona oriental, 2015	84
Figura 49.	Mapa de precipitación, zona oriental, 2016	85
Figura 50.	Mapa de precipitación, zona oriental, 2017	86
Figura 51.	Mapa de precipitación, zona oriental, 2018	87
Figura 52.	Mapa de temperatura, zona oriental, 2013	88
Figura 53.	Mapa de temperatura, zona oriental, 2014	89
Figura 54.	Mapa de temperatura, zona oriental, 2015	90
Figura 55.	Mapa de temperatura, zona oriental, 2016	91
Figura 56.	Mapa de temperatura, zona oriental, 2017	92
Figura 57.	Mapa de temperatura, zona oriental, 2018	93
Figura 58.	Mapa de humedad relativa, zona oriental, 2013	94
Figura 59.	Mapa de humedad relativa, zona oriental, 2014	95
Figura 60.	Mapa de humedad relativa, zona oriental, 2015	96
Figura 61.	Mapa de humedad relativa, zona oriental, 2016	97
Figura 62.	Mapa de humedad relativa, zona oriental, 2017	98
Figura 63.	Mapa de humedad relativa, zona oriental, 2018	99

ÍNDICE DE TABLAS

Tabla 1. Rendimiento potencial del cultivo del maíz	4
Tabla 2. Precio anual promedio del maíz a nivel mayorista	5
Tabla 3. Rendimiento potencial del cultivo del arroz	8
Tabla 4. Precio anual promedio del arroz a nivel mayorista	9
Tabla 5. Correlación bivariada arroz 2013, nacional	57
Tabla 6. Correlación bivariada maíz 2013, nacional	58
Tabla 7. Correlación bivariada arroz 2014, nacional	
Tabla 8. Correlación bivariada maíz 2014, nacional	60
Tabla 9. Correlación bivariada arroz 2015, nacional	61
Tabla 10. Correlación bivariada maíz 2015, nacional	
Tabla 11. Correlación bivariada arroz 2016, nacional	
Tabla 12. Correlación bivariada maíz 2016, nacional	64
Tabla 13. Correlación bivariada arroz 2017, nacional	
Tabla 14. Correlación bivariada maíz 2017, nacional	66
Tabla 15. Correlación bivariada arroz 2018, nacional	67
Tabla 16. Correlación bivariada maíz 2018, nacional	68
Tabla 17. Resumen modelo de regresión lineal nacional, arroz 2013	69
Tabla 18. Análisis de varianza, modelo de regresión lineal nacional, arroz 2013	3 . 69
Tabla 19. Resumen modelo de regresión lineal nacional, maíz 2013	69
Tabla 20. Análisis de varianza, modelo de regresión lineal nacional, maíz 2013	3 69
Tabla 21. Resumen modelo de regresión lineal nacional, arroz 2014	70
Tabla 22. Análisis de varianza, modelo de regresión lineal nacional, arroz 2014	1.70
Tabla 23. Resumen modelo de regresión lineal nacional, maíz 2014	70
Tabla 24. Análisis de varianza, modelo de regresión lineal nacional, maíz 2014	70
Tabla 25. Resumen modelo de regresión lineal nacional, arroz 2015	71
Tabla 26. Análisis de varianza, modelo de regresión lineal nacional, arroz 2015	5 . 71
Tabla 27. Resumen modelo de regresión lineal nacional, maíz 2015	71
Tabla 28. Análisis de varianza, modelo de regresión lineal nacional, maíz 2015	5 71
Tabla 29. Resumen modelo de regresión lineal nacional, arroz 2016	72
Tabla 30. Análisis de varianza, modelo de regresión lineal nacional, arroz 2016	3.72
Tabla 31. Resumen modelo de regresión lineal nacional, maíz 2016	72
Tabla 32. Análisis de varianza, modelo de regresión lineal nacional, maíz 2016	5 72
Tabla 33. Resumen modelo de regresión lineal nacional, arroz 2017	73
Tabla 34. Análisis de varianza, modelo de regresión lineal nacional, arroz 2017	7 . 73
Tabla 35. Resumen modelo de regresión lineal nacional, maíz 2017	73
Tabla 36. Análisis de varianza, modelo de regresión lineal nacional, maíz 2017	′ 73
Tabla 37. Resumen modelo de regresión lineal nacional, arroz 2018	74

Tabla 38. Análisis de varianza, modelo de regresión lineal nacional, arroz 2018	. 74
Tabla 39. Resumen modelo de regresión lineal nacional, maíz 2018	. 74
Tabla 40. Análisis de varianza, modelo de regresión lineal nacional, maíz 2018.	
Tabla 41. Resumen de modelos de regresión lineal arroz 2013-2018, nacional	
Tabla 42. Resumen de modelos de regresión lineal maíz 2013-2018, nacional	
Tabla 43. Variación de parámetros ambientales, área y precio del arroz a nivel	
nacional	. 76
Tabla 44. Variación de parámetros ambientales, área y precio del maíz a nivel	
nacional	. 76
Tabla 45. Estimación económica de la producción nacional de arroz	
Tabla 46. Estimación económica de la producción nacional de maíz	
Tabla 47. Correlación bivariada arroz 2013, zona oriental	
Tabla 48. Correlación bivariada maíz 2013, zona oriental	
Tabla 49. Correlación bivariada arroz 2014, zona oriental	
Tabla 50. Correlación bivariada maíz 2014, zona oriental	
Tabla 51. Correlación bivariada arroz 2015, zona oriental	
Tabla 52. Correlación bivariada maíz 2015, zona oriental	
Tabla 53. Correlación bivariada arroz 2016, zona oriental	
Tabla 54. Correlación bivariada maíz 2016, zona oriental	
Tabla 55. Correlación bivariada arroz 2017, zona oriental	
Tabla 56. Correlación bivariada maíz 2017, zona oriental	
Tabla 57. Correlación bivariada arroz 2018, zona oriental	
Tabla 58. Correlación bivariada maíz 2018, zona oriental	
Tabla 59. Resumen modelo de regresión lineal arroz 2013, zona oriental	107
Tabla 60. Análisis de varianza, modelo de regresión lineal arroz 2013, zona	
oriental	107
Tabla 61. Resumen modelo de regresión lineal maíz 2013, zona oriental	107
Tabla 62. Análisis de varianza, modelo de regresión lineal maíz 2013, zona	
oriental	107
Tabla 63. Resumen modelo de regresión lineal arroz 2014, zona oriental	108
Tabla 64. Análisis de varianza, modelo de regresión lineal arroz 2014, zona	
oriental	108
Tabla 65. Resumen modelo de regresión lineal maíz 2014, zona oriental	108
Tabla 66. Análisis de varianza, modelo de regresión lineal maíz 2014, zona	
oriental	108
Tabla 67. Resumen modelo de regresión lineal arroz 2015, zona oriental	109
Tabla 68. Análisis de varianza, modelo de regresión lineal arroz 2015, zona	
oriental	109
Tabla 69. Resumen modelo de regresión lineal maíz 2015, zona oriental	109

	Análisis de varianza, r	_			00
	Resumen modelo de r				
Tabla 72. <i>A</i>	Análisis de varianza, r	nodelo de regres	ión lineal arroz 2016	s, zona	
oriental				1	10
	Resumen modelo de r Análisis de varianza, r	•			10
					10
	Resumen modelo de r Análisis de varianza, r	•			11
oriental				1	11
	Resumen modelo de r Análisis de varianza, r	•			11
		_			11
Tabla 79. F	Resumen modelo de r	egresión lineal a	rroz 2018, zona orie	ntal1	12
Tabla 80. A	Análisis de varianza, r	nodelo de regres	ión lineal arroz 2018	3, zona	
oriental				1	12
	Resumen modelo de r	J	•		12
	Análisis de varianza, n	•			
oriental					
	Resumen de modelos	•			
Tabla 84. F	Resumen de modelos	de regresión line	eal maíz 2013-2018,	zona orient	tal
	√ariación de parámetr		• •		14
	Variación de parámetr			íz, zona	
	Estimación económica	a de la producció			
	Estimación económica				

ÍNDICE DE GRÁFICOS

Gráfico 1. Precio anual promedio del maíz a nivel de consumidor (USD/lb)5
Gráfico 2. Precio anual promedio del arroz a nivel de consumidor (USD/lb)9
Gráfico 3. Variación porcentual anual de parámetros ambientales, área y precio del
arroz a nivel nacional77
Gráfico 4. Variación porcentual anual de parámetros ambientales, área y precio del
maíz a nivel nacional78
Gráfico 5. Variación porcentual anual de área, precio prom. mayorista y estimación
económica de la producción nacional de arroz80
Gráfico 6. Variación porcentual anual de área, precio prom. mayorista y estimación
económica de la producción nacional de maíz81
Gráfico 7. Variación porcentual anual de parámetros ambientales, área y precio del
arroz, zona oriental115
Gráfico 8. Variación porcentual anual de parámetros ambientales, área y precio del
maíz, zona oriental116
Gráfico 9. Variación porcentual anual de área, precio prom. mayorista y estimación
económica de la producción de arroz, zona oriental118
Gráfico 10. Variación porcentual anual de área, precio prom. mayorista y
estimación económica de la producción de maíz, zona oriental119

SIGLAS

CENTA Centro Nacional de Tecnología Agropecuaria y Forestal "Enrique Álvarez

Córdova" Centro Nacional de Tecnología Agropecuaria y Forestal

CNR Centro Nacional de Registros de El Salvador

CRRH Comité Regional de Recursos Hidráulicos

DGEA Dirección General de Economía Agropecuaria

DLE Diccionario de la Lengua Española

FAO Organización de las Naciones Unidas para la Alimentación y la Agricultura

GLONASS Sistema Global de Navegación por Satélite de Rusia

GPS Sistema de Posicionamiento Global de los Estados Unidos de América

IDW Distancia Inversa Ponderada

INATEC Instituto Nacional Tecnológico de Nicaragua

INEGI Instituto Nacional de Estadística y Geografía de México

INTAGRI Instituto para la Innovación Tecnológica en Agricultura de México

MAG Ministerio de Agricultura y Ganadería de El Salvador

MARN Ministerio de Medio Ambiente y Recursos Naturales de El Salvador

MDE Modelo Digital de Elevación

NASA Administración Nacional de la Aeronáutica y del Espacio de los Estados

Unidos de América

OLI Sensor Operacional de Imágenes en Tierra

PROCISUR Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y

Agroindustrial del Cono Sur

SIG Sistemas de Información Geográfica

SRC Sistema de Referencia de Coordenadas

TIRS Sensor Termal de Infrarrojos

UNAB Universidad Dr. Andrés Bello, de El Salvador

USD Dólares de los Estados Unidos de América

USGS Servicio Geológico de los Estados Unidos

WMO Organización Meteorológica Mundial

ABREVIATURAS

Acum. Acumulado

Ha Hectárea

Lb. Libra

Mm Milímetro

msnm Metros Sobre el Nivel del Mar

Prom. Promedio

qq Quintal

R Coeficiente de correlación

R² Coeficiente de determinación

s.f. sin fecha

Sig. Significancia

°C Grados centígrados

HR% Humedad relativa

PRÓLOGO

En El Salvador, ya es conocido que en ocasiones la producción de granos básicos es afectada por la variación de parámetros ambientales como la precipitación, temperatura y humedad relativa, entre otros aspectos edafoclimáticos; sin embargo, es poco explorada la posibilidad de articular la economía con sistemas de información geográfica, lo cual incluye estimaciones geoespaciales a nivel nacional, utilizando teledetección y fotogrametría, conociendo así, cómo la producción de granos básicos ha sido afectada o beneficiada por los parámetros ambientales ya mencionados.

En esta edición del informe de la investigación "Estimación económica de efectos por variabilidad de parámetros ambientales en la producción de granos básicos, zona oriental, El Salvador 2013-2018", se presenta un análisis espacial y estadístico, con lo que se demuestra cómo la producción presentó una fluctuación positiva, negativa o neutra, según las condiciones meteorológicas de cada uno de los años de estudio. Es importante hacer énfasis que el Ministerio de Medio Ambiente y Recursos Naturales (MARN) declaró sequía severa en el año 2015.

Por tanto, el presente informe da continuidad a la propuesta de articulación de diferentes áreas de conocimiento iniciada con la investigación para el periodo 2013-2017: economía, administración y comercio, agronomía (específicamente la rama de agricultura) y tecnología (con sistemas de información geográfica). En este sentido, y ahora para el periodo 2013-2018, se demuestra cómo la economía puede realizar estimaciones con el apoyo de la tecnología de teledetección y fotogrametría, tanto a nivel nacional como para la zona oriental.

Para realizar la presente investigación del área de economía, administración y comercio, se han utilizado los resultados del proyecto de investigación 2019 del área de tecnología de nuestra Universidad, retomando específicamente las capas vectoriales de áreas estimadas de cultivo de maíz y arroz, además de ejecutar la interpolación de datos de precipitación, temperatura y humedad relativa, de las estaciones meteorológicas del MARN, obtenidos mediante solicitud directa al Observatorio Ambiental de dicho Ministerio. Por otra parte, se han utilizado como referencia los precios promedio anuales de maíz y arroz reportados por la Dirección General de Economía Agropecuaria, perteneciente al Ministerio de Agricultura y Ganadería de El Salvador.

Finalmente, presento este informe como fuente de consulta que será útil para Instituciones Estatales, Gobiernos Municipales y Organizaciones No Gubernamentales relacionadas con la producción de granos básicos y el estudio de parámetros ambientales; ya que esta investigación cuenta con información actualizada y sometida a procedimientos estadísticos.

Licda. MAE. DHC. Ana Marta Concepción Moreno de Araujo, Rectora.

RESUMEN

Esta investigación permitió articular tres diferentes ramas de conocimiento: economía, agronomía (específicamente la agricultura) y sistemas de información geográfica, para estimar la producción de maíz y arroz en el periodo 2013-2018.

La base de datos utilizada para el análisis fue proporcionada por el Observatorio Ambiental del Ministerio de Medio Ambiente y Recursos Naturales de El Salvador (MARN). Para las visitas de campo en áreas de producción de maíz y arroz, se contó con la orientación de la agencia de extensión del Centro Nacional de Tecnología Agropecuaria y Forestal "Enrique Álvarez Córdova" del municipio de San Miguel.

Los resultados de la investigación se presentan tanto a nivel nacional, como para la zona oriental; compuesta por los departamentos de Usulután, San Miguel, Morazán y La Unión.

La base de datos fue geoprocesada mediante la herramienta denominada "IDW" (distancia inversa ponderada), con la que se obtuvieron capas ráster interpoladas de todos los parámetros ambientales a nivel nacional y posteriormente para la zona oriental Con dichas capas fue posible elaborar mapas de distribución espacial de precipitación, temperatura y humedad relativa, logrando obtener los valores mínimos, máximos y promedios, además de modelos de regresión lineal múltiple, donde se evidencia en qué porcentaje la variación en las áreas de cultivo de maíz y arroz puede ser explicada a partir de la variabilidad en uno o más parámetros ambientales.

Según los resultados obtenidos, se ha comprobado que, en un buen número de casos, la fluctuación de los parámetros ambientales ha presentado asociación con la variación en las áreas estimadas de cultivo para cada año. En términos generales, un aumento en la temperatura, ocasiona una disminución en la humedad relativa y en la precipitación, lo que, a su vez, afecta negativamente a los cultivos incluidos en esta investigación.

ABSTRACT

This research allowed to articulate three different branches of knowledge: economics, agronomy (specifically agriculture) and geographic information systems, to estimate the production of corn and rice in the 2013-2018 period.

The database used for the analysis was provided by the Environmental Observatory of the Ministry of Environment and Natural Resources of El Salvador (MARN). For field visits in areas of corn and rice production, orientation and guidance was provided by the extension agencies of the National Center of Agricultural and Forestry Technology "Enrique Álvarez Córdova" of the municipality of San Miguel

The results of the research are presented both nationally and by the eastern zone; integrated by Usulután, San Miguel, Morazán and La Unión.

The database was geoprocessed using the tool called "IDW" (inverse distance weighted), with which interpolated raster layers of all environmental parameters were obtained nationally and subsequently for the eastern zone. With these layers it was possible to elaborate maps of spatial distribution of precipitation, temperature and relative humidity, obtaining the minimum, maximum and average values, in addition to multiple linear regression models, where it is evidenced in what percentage the variation in the areas of cultivation of corn and rice can be explained from the variation in one or more environmental parameters.

According to the results obtained, it has been proven that, in a good number of cases, the variability of the environmental parameters has been associated with the variation in the estimated cultivation areas for each year. In general terms, an increase in temperature causes a decrease in relative humidity and precipitation, which, in turn, negatively affects the crops included in this research.

1. INTRODUCCIÓN

En El Salvador, los fenómenos meteorológicos como la sequía o en caso contrario, el exceso de precipitación en periodos cortos de tiempo, afectan de diversas formas, por ejemplo: en términos de infraestructura, daños materiales, o la pérdida parcial o total de cultivos. En este sentido, la presente investigación da continuidad a la propuesta realizada en la investigación del año 2018, donde se planteaba la articulación de la economía, sistemas de información geográfica y agronomía (específicamente la agricultura), para estimar económicamente los efectos de la variabilidad de los parámetros ambientales precipitación, temperatura y humedad relativa, en la producción de granos básicos, puntualmente maíz y arroz, mediante teledetección y fotogrametría.

La propuesta de articular las áreas ya mencionadas, consiste en el uso de técnicas de teledetección, fotogrametría y geoprocesamiento para obtener capas vectoriales y capas ráster, áreas estimadas de los cultivos incluidos y mapas digitales; y posteriormente buscar coeficientes de correlación y determinación de las áreas estimadas con información de la base de datos de parámetros ambientales, además de utilizar el rendimiento de cultivos y precios promedio anuales de maíz y arroz para el periodo de estudio; demostrando cómo la economía se puede auxiliar de bases de datos meteorológicas y Sistemas de Información Geográfica, para realizar estimaciones y así tomar decisiones.

En esta investigación se han incluido las capas vectoriales de áreas estimadas de cultivo de maíz y arroz para el periodo 2013-2018 obtenidas en el proyecto 2019 del área de Tecnología de la Universidad Dr. Andrés Bello (UNAB). Por otra parte, la base de datos de parámetros ambientales: precipitación, temperatura y humedad relativa, fue solicitada y posteriormente proporcionada por el Observatorio Ambiental, perteneciente al Ministerio de Medio Ambiente y Recursos Naturales.

Para facilitar la interpretación de los resultados de la investigación, se presentan algunos elementos teóricos fundamentales sobre los cultivos estudiados, datos sobre rendimiento y precio, generalidades sobre Sistemas de información geográfica, además del procesamiento estadístico y análisis de datos.

Cultivo del maíz

√ Generalidades

El cultivo del maíz (nombre científico: *Zea mays*), es originario de los trópicos de América Latina, de gran importancia en la canasta básica alimenticia de la población salvadoreña, forma parte de la familia de las Gramíneas (Centro Nacional de Tecnología Agropecuaria y Forestal "Enrique Álvarez Córdova" -CENTA-, 2014; e Instituto Nacional Tecnológico de Nicaragua -INATEC-, 2017).

✓ Morfología

La planta de maíz posee raíces fasciculadas que ayudan a fijar la planta al suelo, tallos simples sin ramificaciones que pueden alcanzar los 4 metros de altura, flores monoicas con inflorescencia masculina (panícula) y femenina (espádice) en la misma planta, hojas largas con extremos afilados y frutos conocidos como mazorcas, que están compuestos por determinada cantidad de granos (INATEC, 2017).

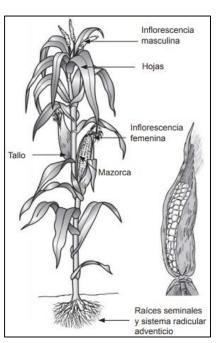
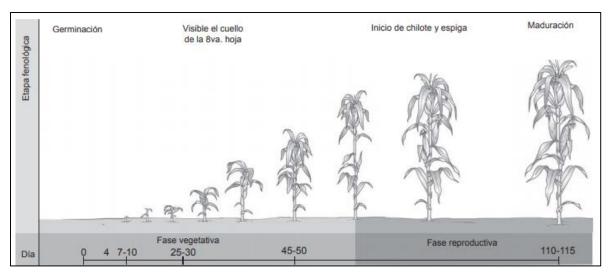



Figura 1. Morfología de la planta de maíz

✓ Etapas fenológicas

Según el Instituto para la Innovación Tecnológica en Agricultura de México (INTAGRI)², las etapas fenológicas o fases de desarrollo de la planta de maíz se dividen en dos: la fase vegetativa (que va desde la siembra hasta antes de la aparición de las estructuras reproductivas) y la fase reproductiva (la cual inicia cuando se visualiza la espiga del maíz y termina con la madurez del cultivo).

² <u>https://www.intagri.com/articulos/fitosanidad/la-fenologia-del-maiz-y-su-relacion-con-la-incidencia-de-plagas</u>

Fuente: INATEC, 2017

Figura 2. Etapas fenológicas del cultivo de maíz

✓ Requerimientos edafoclimáticos

Estos requerimientos hacen referencia a las necesidades de la planta respecto a temperatura, suelo, agua, etc. El cultivo del maíz necesita entre 500 y 700 mm de precipitación distribuida durante el ciclo del cultivo. El déficit hídrico es un factor que limita en gran medida la producción de maíz en El Salvador. Sin embargo, el cultivo también es muy sensible al encharcamiento, producido por exceso de agua del riego mecánico, o por la concentración de precipitación en periodos cortos de tiempo, en un terreno que no tenga una pendiente adecuada. Por otra parte, para un buen desarrollo de la planta, la temperatura debe oscilar entre los 20 y 27°C y se debe cultivar a una altura que vaya de los cero a los 1000 metros sobre el nivel del mar (CENTA, 2014).

En cuanto a la textura del suelo, las plantas de maíz se desarrollan de mejor manera en suelos francos, franco-arenosos y arenosos, cuyo pH se encuentre entre 5.5 y 7.8. El cultivo del maíz se adapta a diversos tipos de suelos, donde puede producir buena cosecha y; en términos generales, los suelos idóneos para el cultivo del maíz deben contener suficiente materia orgánica, poseer un buen drenaje y con elevada capacidad de infiltración y retención de humedad (CENTA, 2014).

La planta de maíz tiene una amplia capacidad de aprovechamiento de las oportunidades que ofrece el medio ambiente, con un alto nivel de respuesta a los efectos de la luz (CENTA, 2014).

✓ Rendimiento potencial

El potencial de rendimiento del cultivo del maíz está en función de la variedad utilizada. Cabe mencionar que el "rendimiento potencial" hace referencia a la producción esperada bajo condiciones óptimas para el desarrollo del cultivo; para el caso de esta investigación, la producción se estima en quintales por manzana. En la tabla se presentan las variedades híbridas y de polinización libre, liberados y recomendados por CENTA en su guía técnica (2014).

Variedad	Rendimiento (qq/mz)
H-59	95 – 100
Oro blanco	95 – 100
Platino	95 – 102
CENTA Pasaquina	65
CENTA Protemás	75
CENTA Dorado	60 – 80

Fuente: elaboración propia a partir de CENTA (2014).

Tabla 1. Rendimiento potencial del cultivo del maíz

✓ Precio promedio anual

Los precios promedio anuales del maíz, se obtuvieron de los Anuarios de Estadísticas Agropecuarias de la Dirección General de Economía Agropecuaria (DGEA) del Ministerio de Agricultura y Ganadería de El Salvador (MAG). Cada precio, hace referencia a la media obtenida de los precios de un producto durante un año. A partir de los datos obtenidos, se presenta la variación de precios en dos ámbitos: los precios a nivel de mayorista; es decir, destinados a compradores de gran escala (generalmente para una posterior comercialización) y los precios a nivel de consumidor final.

Mayorista

A nivel mayorista, los precios anuales promedio del maíz han fluctuado durante el periodo 2013-2018. El precio promedio más alto, se registró en el año 2015; llegando a \$20.03 por quintal; seguido del precio del año 2018 (\$17.47). El precio promedio más bajo se identificó en el año 2017 (\$12.20). Hay que mencionar que las variaciones en los precios son el resultado de diversos factores tales como la oferta, la demanda, la producción, el comercio exterior, factores agroclimáticos, entre otros.

A continuación, se presentan los precios anuales promedio del maíz a nivel mayorista registrados durante el periodo de tiempo investigado:

Año	Precio a nivel mayorista (USD/qq)
2013	\$14.34
2014	\$16.58
2015	\$20.03
2016	\$18.20
2017	\$12.20
2018	\$17.47

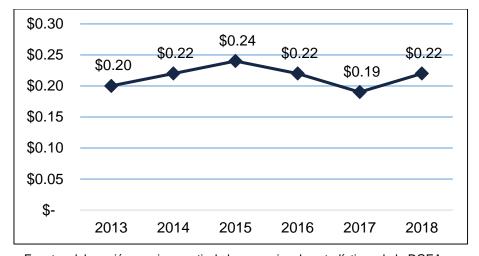

Fuente: elaboración propia a partir de los anuarios de las estadísticas de la DGEA

Tabla 2. Precio anual promedio del maíz a nivel mayorista

Consumidor

A nivel de consumidor, los precios anuales promedio del maíz han fluctuado durante el periodo 2013-2018; con una tendencia similar a los precios de nivel mayorista. El precio promedio más alto, se registró en el año 2015; alcanzando los \$0.24 por libra; a su vez, el precio más bajo del periodo de estudio corresponde al año 2017 (\$0.19).

A continuación, se presentan los precios anuales promedio a nivel de consumidores, registrados durante el periodo de estudio:

Fuente: elaboración propia a partir de los anuarios de estadísticas de la DGEA Gráfico 1. Precio anual promedio del maíz a nivel de consumidor (USD/lb)

Cultivo del arroz

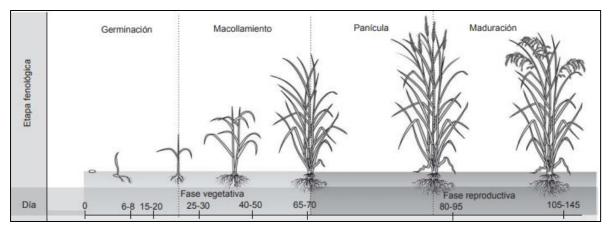
√ Generalidades

El arroz (nombre científico: *Oryza sativa*), es un cultivo originario del sudeste asiático, principalmente de la India, que ocupa el cuarto lugar de importancia entre los granos básicos de la canasta básica alimenticia de la población salvadoreña. Al igual que el maíz, pertenece a la familia de las Gramíneas. Los departamentos más productores de arroz en el país son: La Libertad, Chalatenango, Cuscatlán, San Vicente y Ahuachapán (INATEC, 2017; y CENTA, 2019).

✓ Morfología

Se caracteriza por tener un sistema radicular con dos tipos de raíces: las seminales o temporales y las secundarias adventicias o permanentes. El tallo de las plantas de arroz es ramificado y puede medir hasta 1.8 metros de altura (INATEC, 2017).

Las hojas, estas están distribuidas en forma alterna a lo largo del tallo. Debajo de la panícula se desarrolla la hoja bandera. Además, poseen flores en forma de panícula determinada que se localiza sobre el vástago terminal (INATEC, 2017).


Inflorescencia Tallos cilíndricos y nudosos Hoja Raíces delgadas y filamentosas

Fuente: INATEC, 2017

Figura 3. Morfología de la planta de arroz

✓ Etapas fenológicas

Las etapas fenológicas o fases de desarrollo del cultivo del arroz se dividen en dos: la fase vegetativa (que va desde la siembra, la germinación hasta el macollamiento; es decir, la aparición de los primeros hijos de la planta) y la fase reproductiva (la cual se caracteriza por la emergencia de la hoja bandera, la panícula, la floración y maduración). Durante la etapa reproductiva, es necesario que la planta de arroz tenga acceso a luz solar intensa; ya que es en esta etapa donde ocurre el llenado de granos y la fotosintetización del 60% de los carbohidratos (INATEC, 2017).

Fuente: INATEC, 2017

Figura 4. Etapas fenológicas del cultivo de arroz

✓ Requerimientos edafoclimáticos

En cuanto a estos requerimientos, en general, el cultivo del arroz necesita entre 800 y 2000 mm de precipitación distribuida durante el ciclo del cultivo. Sin embargo, es un cultivo de alto requerimiento hídrico. En zonas con menos de 1000 mm de precipitación pluvial, es preciso implementar sistemas de riego para contrarrestar las deficiencias hídricas del cultivo; por tanto, cuando hay estrés hídrico o sequía puede ocasionar pérdidas graves y si no se dispone de agua para riego, se recomienda que los productores se dediquen a otro tipo de cultivo (INATEC, 2017; y CENTA, 2019).

Los suelos deben ser de topografía plana, con buena fertilidad. Se debe evitar sembrar arroz en terrenos arenosos o con pendientes onduladas; por lo que se recomienda cultivar en suelos francos, franco-arcillosos y arcillosos; ya que en suelos frágiles con riesgo de erosión se deben efectuar labores para evitar su degradación. El pH del suelo para el desarrollo óptimo del cultivo deber ser entre 5 y 7.5 (INACTEC, 2017; y CENTA, 2019).

Por otra parte, la temperatura debe encontrarse en el rango de 22 a 32°C y se debe cultivar a una altitud que vaya de cero a 2,500 metros sobre el nivel del mar (CENTA, 2019).

✓ Rendimiento potencial

El potencial de rendimiento del cultivo del arroz está en función de la variedad utilizada. En la tabla se presentan las variedades generadas, liberadas y recomendadas por CENTA y presentados en diversos boletines técnicos.

Variedad	Rendimiento (qq/mz)
CENTA A-7	140
CENTA A-8	147
CENTA A-9	181
CENTA A-10	195
CENTA A-11	210
CENTA A-RAZ	200.5

Fuente: elaboración propia a partir de CENTA (2019)

Tabla 3. Rendimiento potencial del cultivo del arroz

✓ Precio promedio anual

Al igual que en el caso del maíz, los precios promedio del arroz fueron obtenidos de los anuarios de estadísticas agropecuarias disponibles en la página web de la Dirección General de Economía Agropecuaria del MAG.

Mayorista

A nivel mayorista, los precios promedio anuales han variado en el periodo de estudio. El precio promedio por quintal más alto fue identificado en 2014 (\$40.44). El precio más bajo se registró en el año 2017, siendo de \$35.40. Es importante mencionar que; similar a los precios del maíz, las variaciones en los precios del arroz son el resultado de la interacción de variables como: la oferta y demanda del producto, factores agroclimáticos, la producción, el comercio exterior, entre otros.

A continuación, se presentan los precios anuales promedio de arroz a nivel mayorista, registrados durante el periodo 2013-2018:

Año	Precio a nivel mayorista de (USD/qq)
2013	\$38.05
2014	\$40.44
2015	\$38.26
2016	\$36.80
2017	\$35.40
2018	\$35.84

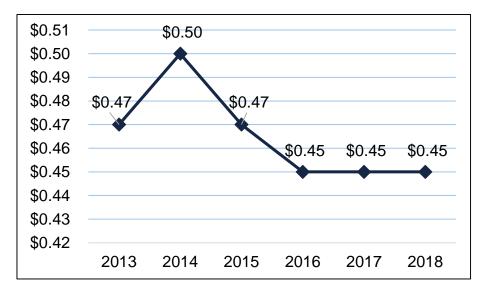

Fuente: elaboración propia a partir de los anuarios de estadísticas de la DGEA

Tabla 4. Precio anual promedio del arroz a nivel mayorista

Consumidor

Los precios promedio anuales del arroz a nivel consumidor, han variado durante el periodo de estudio de manera diferente a los precios a nivel mayorista. El precio promedio anual más alto, se registró en el año 2014 (\$0.50 por libra). El precio más bajo se identificó en los años 2016 a 2018, siendo de \$0.45.

A continuación, se presentan los precios anuales promedio a nivel de consumidor registrados durante el periodo de tiempo investigado:

Fuente: elaboración propia a partir de los anuarios de estadísticas de la DGEA Gráfico 2. Precio anual promedio del arroz a nivel de consumidor (USD/lb)

Parámetros ambientales

En ocasiones los conceptos tiempo y clima se utilizan como términos equivalentes, cuando en realidad son cuestiones distintas, por lo que es útil contar con las definiciones.

✓ Tiempo

Según el Comité Regional de Recursos Hidráulicos (CRRH)³, el tiempo:

refleja las características que presenta el fenómeno en lapsos que van desde horas hasta varios días; los cuales se expresan en valores de variables meteorológicas, tales como temperatura, humedad relativa, presión, dirección y velocidad del viento, visibilidad, cantidad de lluvia, entre otros.

Por tanto, el tiempo hace referencia a "las condiciones meteorológicas en un instante determinado, dicho instante es un lapso que puede durar horas, días o inclusive semanas" (Campos Aranda, 2005, p. 14).

✓ Clima

Para la Organización Meteorológica Mundial (WMO)⁴, el clima hace referencia a la "síntesis de las condiciones meteorológicas en un lugar determinado, caracterizada por estadísticas a largo plazo (valores medios, varianzas, probabilidades de valores extremos, etc.) de los elementos meteorológicos en dicho lugar". También, la WMO⁵ afirma que el clima puede explicarse a través de descripciones estadísticas de las tendencias y variabilidad de elementos como la temperatura, presión atmosférica y vientos.

Dado lo anterior, el tiempo y el clima son aspectos importantes para la determinación de los sistemas de cultivo y sus rendimientos. Por otra parte, también existen propiedades geográficas que propician condiciones meteorológicas particulares: latitud, altitud, relieve; además del tipo de suelo, distribución de tierra y agua, entre otros (Campos Aranda, 2005).

³ http://recursoshidricos.org/tiempo/

⁴http://wmo.multitranstms.com/MultiTransWeb/TermBase/Account.mvc/DirectAccess?languageCod e=en-CA&username=Guest

⁵ https://library.wmo.int/pmb_ged/wmo_100_es.pdf

Puntualmente los parámetros ambientales incluidos en esta investigación son:

✓ Temperatura

La temperatura puede definirse como una "magnitud física que expresa el grado o nivel de calor de los cuerpos o del ambiente"⁶. Para el crecimiento de los diferentes cultivos, existen rangos de temperatura óptima que propician las condiciones para el proceso de acumulación de materia necesaria para la fotosíntesis (Campos Aranda, 2005).

✓ Humedad relativa

Según la WMO, la humedad relativa es la "relación porcentual a una presión y temperaturas dadas entre el peso molecular en gramos del vapor de agua y el peso molecular en gramos que el aire tendría si estuviese saturado de agua a la misma presión y temperatura" ⁷.

✓ Precipitación

La precipitación es básicamente el "agua procedente de la atmósfera, y que en forma sólida o líquida se deposita sobre la superficie de la tierra". La precipitación puede manifestarse en forma de lluvia, granizo, nieve, entre otros.

Partiendo de que esta investigación es la continuación de una propuesta de vinculación entre las áreas de economía, agronomía y Sistemas de información geográfica; se incluye un apartado de aspectos fundamentales sobre esta última área de conocimiento.

⁶ Diccionario de la lengua española, https://dle.rae.es/?id=ZQ9rRqa

⁷ http://wmo.multitranstms.com/MultiTransWeb/Web.mvc

⁸ Diccionario de la lengua española, https://dle.rae.es/?id=TvqfpKg

Sistemas de Información Geográfica

De acuerdo con el Instituto Nacional de Estadística y Geografía de México -INEGI-(2014), los sistemas de información geográfica (SIG) son un "conjunto de herramientas diseñadas para obtener, almacenar, recuperar y desplegar datos espaciales del mundo real".

En ese sentido, los SIG incluyen bases de datos, mapas, imágenes (ya sean capas ráster o imágenes georreferenciadas), equipo de captura de datos, personal especializado, programas para el procesamiento de datos, entre otros; los cuales brindan la información necesaria para la toma de decisiones en diferentes ámbitos.

La importancia de los SIG radica en (INEGI, 2014):

- Integrar información espacial con otro tipo de datos.
- Brinda resultados consistentes para el análisis de datos georreferenciados.
- Innovación en el procesamiento y análisis de datos.
- Permite la visualización de los datos a partir de referencias geográficas y así, establecer conexiones entre diversos fenómenos sociales, económicos y ambientales.

Por tanto, la aplicación de los SIG puede realizarse en la planificación y ordenamiento territorial, gestión de recursos naturales, gestión integral del riesgo de desastres, entre otros (INEGI, 2014).

Geográficamente hablando, los elementos de la superficie terrestre tales como ríos, bosques, lagos, cultivos, etc., pueden almacenarse y procesarse junto con sus atributos; es decir, aquellas características propias que los definen como tal (nombre, tamaño, color, etc.). Cabe mencionar que estos elementos ocupan una posición en la superficie terrestre; la cual está determinada por sus coordenadas (latitud y longitud). Además, dichos elementos tienen una forma geométrica, por lo que pueden ser representados por puntos, líneas y polígonos (Arozarena, Otero y Ezquerra, 2016).

En línea con lo anterior, los datos extraídos de las principales fuentes de información geográfica; es decir, mapas e imágenes satelitales, se pueden almacenar y representar a través de capas vectoriales y capas ráster (Arozarena, Otero y Ezquerra, 2016).

✓ Capa vectorial

Este tipo de capa proporciona información sobre la forma, el tamaño y la localización de un objeto. Gráficamente, se puede representar de tres formas: punto, línea o polígono. Por tanto, cada forma de representación será: (1) un punto definido por sus coordenadas, (2) una línea almacenada a partir del uso de geometría vectorial (es decir, líneas definidas por una magnitud, dirección y sentido) y; (3) por un polígono almacenado como una cadena de segmentos (Arozarena, Otero y Ezquerra, 2016).

✓ Capa ráster

Este tipo de capa se utiliza cuando los objetos de la superficie terrestre se describen a partir de una o varias celdas encadenadas entre sí, pero que no presentan vacíos entre ellas. Un ejemplo de este tipo de capa son las imágenes satelitales e imágenes obtenidas con dron (Arozarena, Otero y Ezquerra, 2016).

El geoprocesamiento tuvo un papel importante en esta investigación, ya que incorpora tres aspectos fundamentales de los sistemas de información geográfica: "automatización de procedimientos, análisis geoespacial y modelado de aspectos de la vida real" (Falla, 2012, p. 33). En ese sentido, se puede definir como el procesamiento de datos que permitan automatizar, documentar y modelar aspectos sociales, económicos y ambientales a partir de análisis geoespacial (Falla, 2012).

Los mapas de precipitación, temperatura y humedad relativa fueron obtenidos mediante interpolación, utilizando la herramienta de ArcGIS Pro denominada IDW (distancia inversa ponderada). Por tanto, el IDW se define como un método de interpolación que obtiene valores y construye una capa ráster, utilizando la técnica de distancia inversa ponderada, teniendo como referencia una capa vectorial de puntos, dentro de un área geográfica definida por una capa vectorial de polígono⁹.

-

⁹ https://pro.arcgis.com/es/pro-app/tool-reference/3d-analyst/idw.htm

La interpolación se utilizó para efectuar cálculos de los valores aproximados (DLE, 2018) de precipitación, temperatura y humedad relativa, conociendo los valores que estos parámetros tomaban en cada una de las 22 estaciones meteorológicas, distribuidas a nivel nacional.

Al utilizar imágenes satelitales, se debe hacer referencia directa al concepto de teledetección, definido como un sistema de captura de información, teniendo como punto de partida la radiación electromagnética captada por uno o más sensores instalados en un satélite orbitando en el espacio, y tienen la capacidad de recolectar datos temáticos, topográficos, entre otros (Arozarena, Otero y Ezquerra, 2016). Para esta investigación se utilizaron imágenes del satélite Landsat 8, disponibles para descarga en uno de los sitios web¹⁰ administrado por el USGS (Servicio Geológico de Estados Unidos).

Respecto a la captura de información a través de satélites, se remonta a la década de los 60s, cuando la Administración Nacional de la Aeronáutica y del Espacio (NASA, por sus siglas en inglés¹¹) pone en órbita los primeros satélites con el fin de realizar observaciones meteorológicas; comenzando así la teledetección espacial. Actualmente, los satélites son capaces de proporcionar sistemas integrados de datos territoriales con gran resolución espacial, espectral y radiométrica, lo cual es el resultado de la radiación electromagnética transformada en información digital. Por tanto, la teledetección es útil para conocer la tierra y sus elementos; así como para detectar y cuantificar los cambios que ocurren en ella (Arozarena, Otero y Ezquerra, 2016).

Otra de las técnicas utilizadas para la captura de información de superficies agrícolas, cuerpos de agua, entre otras; es la fotogrametría, que puede definirse como:

Arte, ciencia y tecnología orientada a obtener información relevante de diversos objetos físicos de la corteza terrestre y de su medio ambiente, a través de procesos de medición e interpretación de imágenes fotográficas y de patrones de energía electromagnética radiante (Herrera, 1987; citado en Arozarena, Otero y Ezquerra, 2016, p. 67).

¹⁰ https://earthexplorer.usgs.gov/

¹¹ National Aeronautics and Space Administration

A partir de la implementación de la fotogrametría en diversos contextos y ámbitos, se pueden obtener observaciones completas de objetos cuyo registro ocurre de forma instantánea, y se pueden manipular y procesar con facilidad (Arozarena, Otero y Ezquerra, 2016).

Herrera (1987); citado en Arozarena, Otero y Ezquerra, (2016); clasifica a la fotogrametría en dos grandes ramas en función del tipo de fotografía utilizada:

- Fotogrametría terrestre; es decir, cuando la fotografía se usa en una posición tal que el eje de la cámara fotográfica resulta horizontal y paralela a la corteza terrestre.
- Fotogrametría aérea; es decir, cuando las fotografías utilizadas son obtenidas desde vehículos aéreos. Para esta investigación, se ha hecho uso de este tipo de fotogrametría.

Procesamiento de datos

El procesamiento de la base de datos de parámetros ambientales incluidos en esta investigación se realizó tanto en el programa SPSS versión 26 como en ArcGIS 10.7.1 y ArcGIS Pro 2.4.0.

Primero, se aborda lo referente al análisis de correlación. Para esto hay que tener en cuenta dos aspectos muy importantes: 1) que los resultados de este análisis indican el grado de relación existente entre las variables incluidas en la investigación (Triola, 2013); 2) para conocer cuantitativamente la relación entre las variables existe el coeficiente de correlación que es un valor entre 0 y 1, donde un valor más cercano a 1, señala una mayor correlación entre variables(Levin y Rubin, 2010), siendo un indicador de las variables que pueden ser incluidas en un modelo de regresión lineal múltiple, y serán las que presenten mayor correlación con la que se defina como variable dependiente. Si el modelo de regresión lineal no se ajusta a la finalidad del estudio, pueden utilizarse los modelos: cuadrático, cúbico, exponencial, entre otros, según la necesidad específica. El coeficiente de correlación será representado mediante la letra "R".

En el análisis estadístico ejecutando regresión lineal múltiple, se encuentra el coeficiente de determinación (representado como "R²"), que será interpretado como el porcentaje de variación de la variable dependiente que puede ser explicado a partir del modelo. El coeficiente de determinación puede sufrir un ajuste en su valor (que es calculado por el SPSS), según se agregue una o más variables al modelo, obteniendo así un coeficiente de determinación ajustado, representado como "R² ajustado", (Anderson, Sweeney, Williams, Camm y Cochran, 2016), que será utilizado para comparar los modelos de regresión de esta investigación.

Otro elemento considerado en este análisis es la significancia estadística, que será representada como "p", y será el valor que indicará la intensidad de la asociación de los valores de la variable dependiente e independientes incluidas en el modelo. El valor de "p" será más valioso, en la medida en que este tiende a cero.

Ahora, conociendo los principales componentes de la regresión lineal múltiple, se puede definir dicha regresión como un procedimiento con el cual se introduce a un modelo una variable dependiente (a predecir), y dos o más variables independientes (predictores), para determinar en qué medida los valores de la variable dependiente pueden ser predichos a partir del conjunto de variables independientes. En general, la función de un modelo de regresión lineal múltiple será de la forma $f(x) = a + b_1x_1 + b_2x_2 + \cdots b_nx_n$ (Levin y Rubin, 2010).

2. MÉTODOS

2.1. Generalidades

Esta investigación; al igual que la realizada en 2018, fue de tipo descriptiva con enfoque cuantitativo, realizando una estimación económica de los efectos de la variabilidad de parámetros ambientales en la producción de maíz y arroz, teniendo como referencia la base de datos sobre dichos parámetros, para el periodo 2013-2018. Las localidades incluidas fueron seleccionadas según los datos proporcionados por el CENTA, realizando visitas a la agencia de extensión de la institución ya mencionada, cercana a la sede regional de la UNAB en San Miguel, solicitando información sobre las superficies cultivadas de maíz y arroz del área geográfica de trabajo de cada agencia; además de los contactos de agricultores; obteniendo una muestra por conveniencia, aplicando como criterios de selección que la persona tuviera a cargo la producción de maíz o arroz, que el terreno tuviera una extensión igual o mayor a 900 metros cuadrados y la accesibilidad del mismo. Todo lo anterior para poder ejecutar vuelos con un dron, muestrear y georreferenciar las zonas de cultivos, y posteriormente ubicar las áreas cultivadas en las imágenes satelitales.

2.2 Zonas de estudio

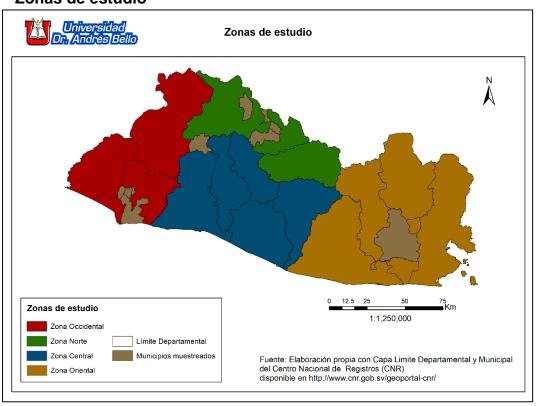


Figura 5. Mapa nacional de zonas de estudio

2.2.1 Zona oriental

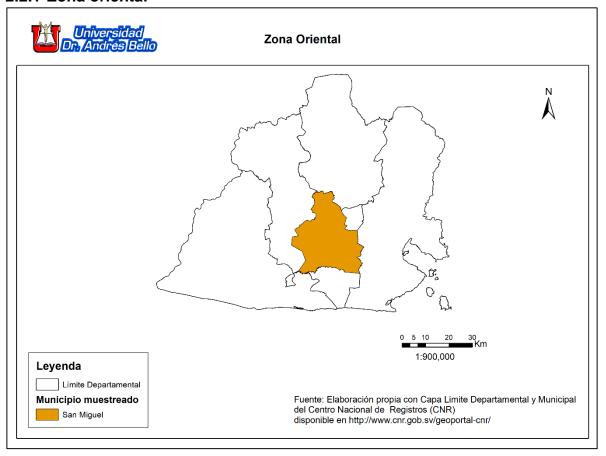


Figura 6. Mapa de Municipio muestreado, Zona Oriental

En el municipio de San Miguel se identificaron algunos cantones como referentes en la producción de maíz, según la información obtenida en el CENTA, a través de la Agencia de Extensión del municipio mencionado.

Los cantones visitados y cantidad de vuelos con dron realizados en cada uno se detallan a continuación.

- 1. Cantón El Brazo, se realizaron dos vuelos con dron.
- 2. Cantón Miraflores, fueron realizados cuatro vuelos.
- 3. Cantón El Volcán, ejecutado únicamente un vuelo con dron.

Ortomosaicos

Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 7. Ortomosaico 1: caserío Casamota, cantón El Brazo, municipio de San Miguel

Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 8. Ortomosaico 2: caserío Casamota, cantón El Brazo, municipio de San Miguel

Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 9. Ortomosaico 1: cantón Miraflores, municipio de San Miguel

Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 10. Ortomosaico 2: cantón Miraflores, municipio de San Miguel

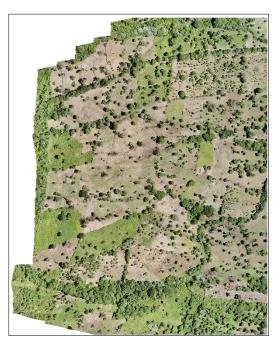
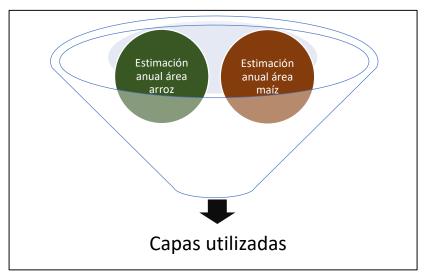

Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 11. Ortomosaico 3: cantón Miraflores, municipio de San Miguel

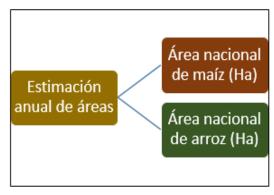
Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 12. Ortomosaico 4: cantón Miraflores, municipio de San Miguel



Fuente: Elaboración propia con procesamiento de imágenes de dron concesionadas.

Figura 13. Ortomosaico 1: caserío Las Lomitas, cantón El Volcán, Municipio de San Miguel


2.3 Insumos utilizados

2.3.1 Capas vectoriales (proyecto de tecnología UNAB 2019).

Fuente: Elaboración propia.

Figura 14. Capas vectoriales utilizadas

Fuente: Elaboración propia

Figura 15. Estimación anual de áreas por cultivo

Las áreas estimadas a nivel nacional de cultivo de maíz y arroz fueron utilizadas para determinar el rendimiento promedio posible por unidad de área de cada cultivo mencionado.

Los registros de los parámetros ambientales fueron útiles para determinar valores mínimos, máximos y promedios de lluvia para cada año, para comprender su relación con la variación en las áreas cultivadas; y por tanto, el cambio en la producción de los granos básicos incluidos en esta investigación.

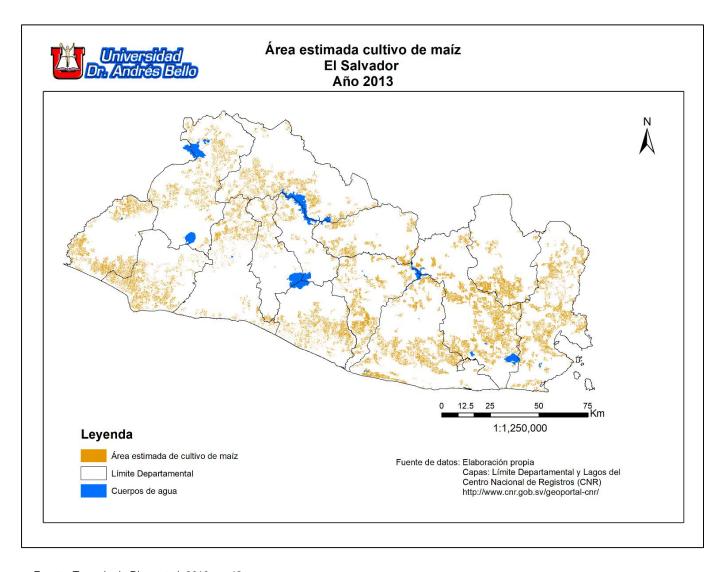


Figura 16. Mapa nacional, área estimada cultivo de maíz, 2013

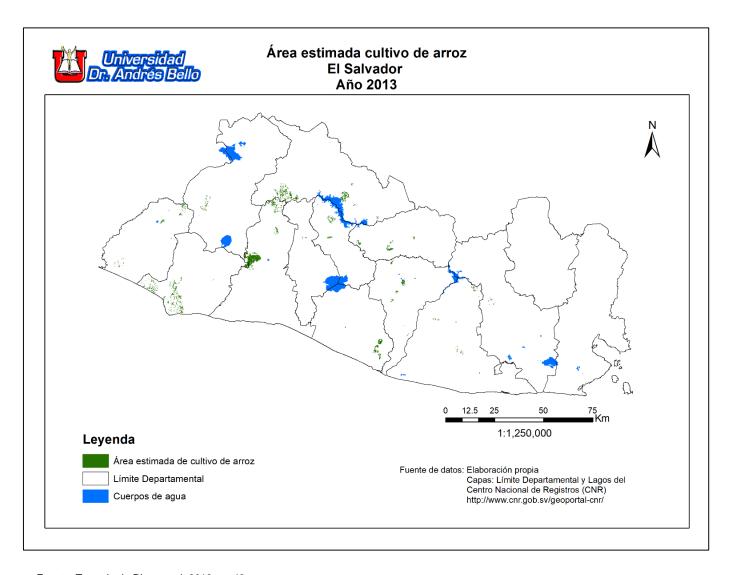


Figura 17. Mapa nacional, área estimada cultivo de arroz, 2013

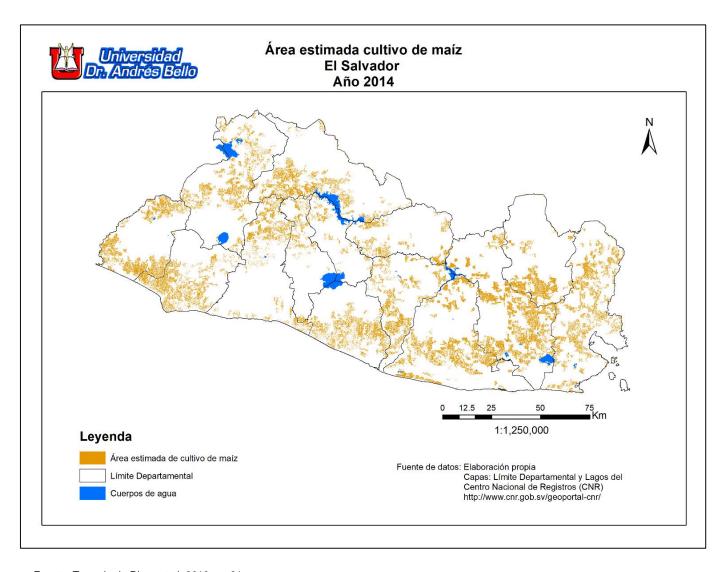


Figura 18. Mapa nacional, área estimada cultivo de maíz, 2014

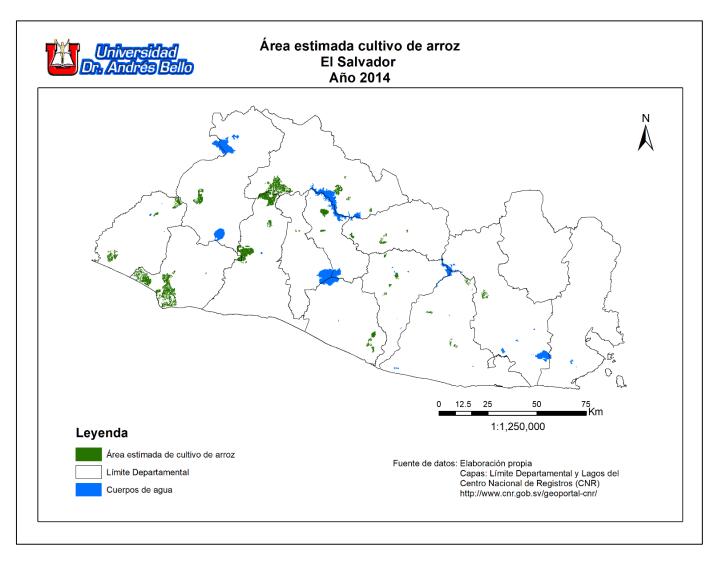


Figura 19. Mapa nacional, área estimada cultivo de arroz, 2014

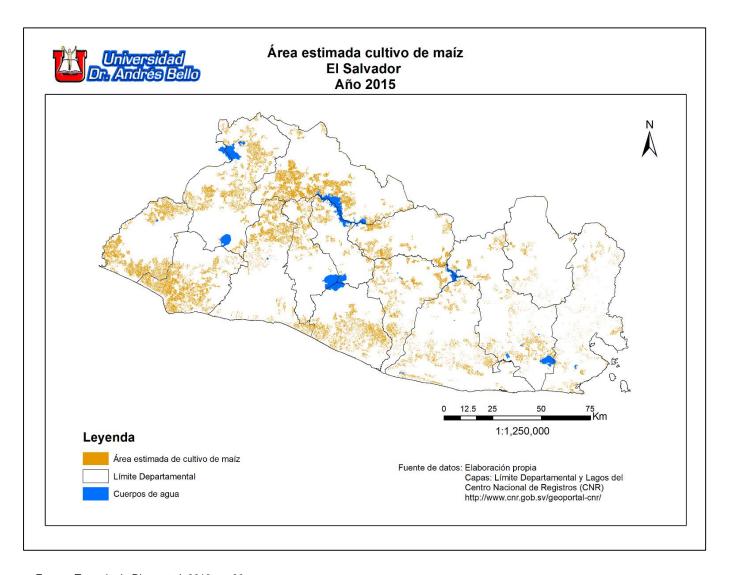


Figura 20. Mapa nacional, área estimada cultivo de maíz, 2015

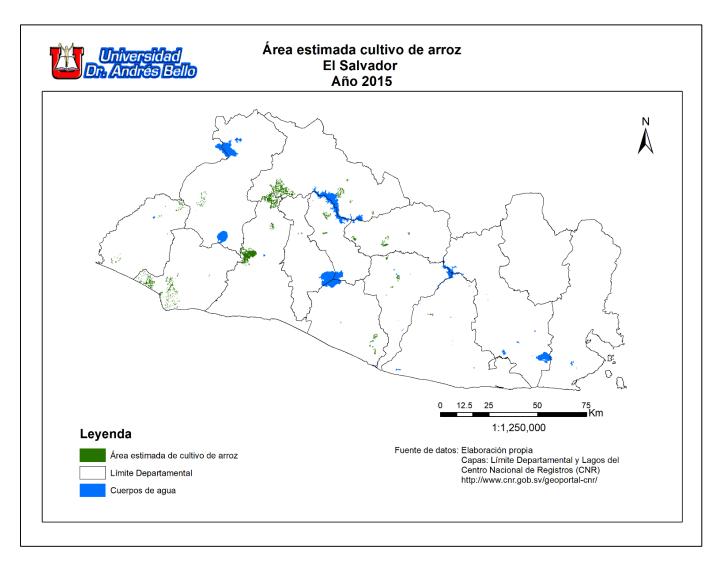


Figura 21. Mapa nacional, área estimada cultivo de arroz, 2015

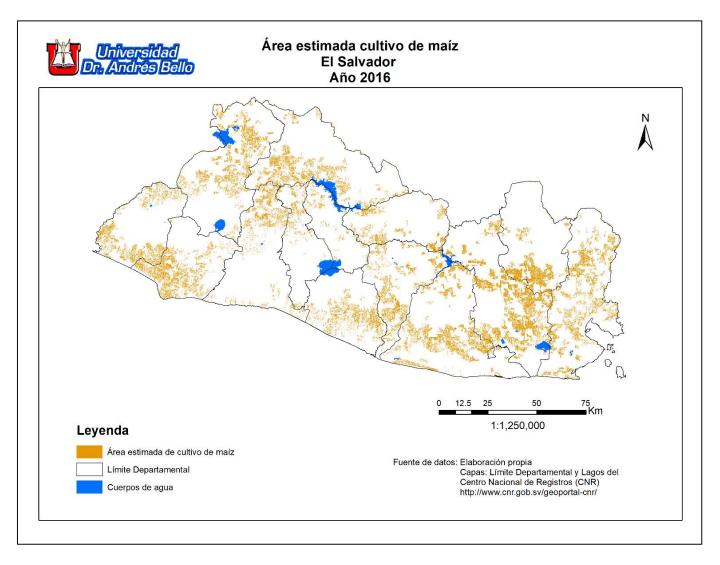


Figura 22. Mapa nacional, área estimada cultivo de maíz, 2016

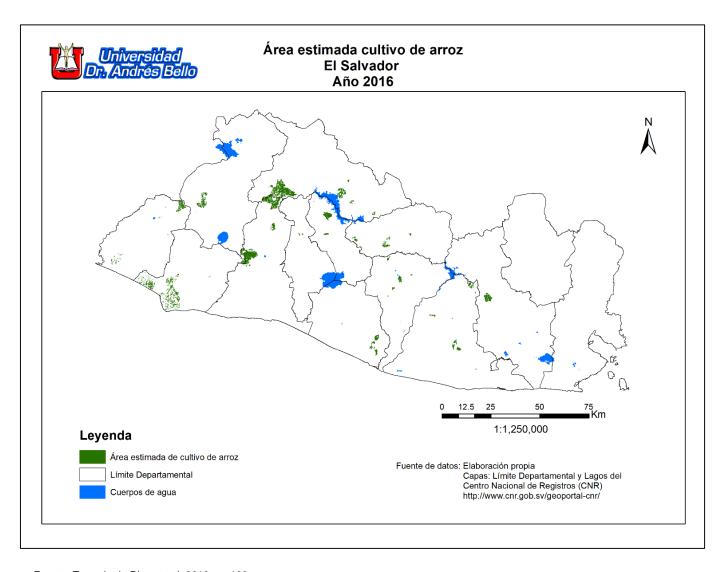


Figura 23. Mapa nacional, área estimada cultivo de arroz, 2016

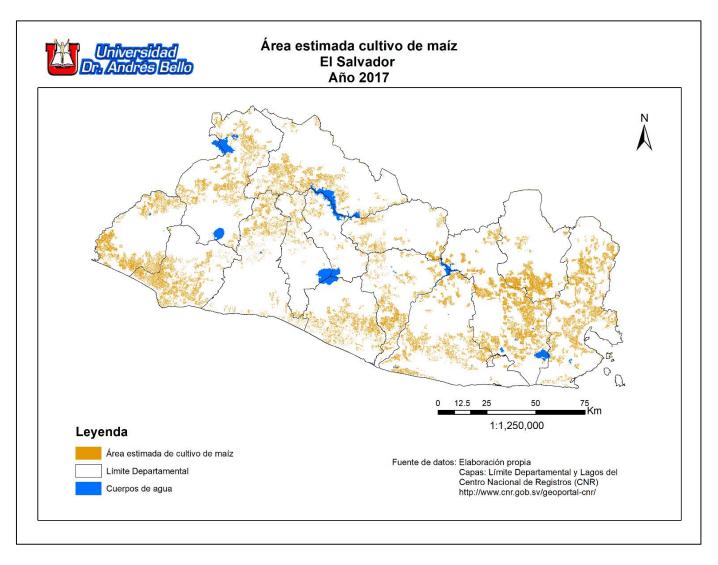


Figura 24. Mapa nacional, área estimada cultivo de maíz, 2017

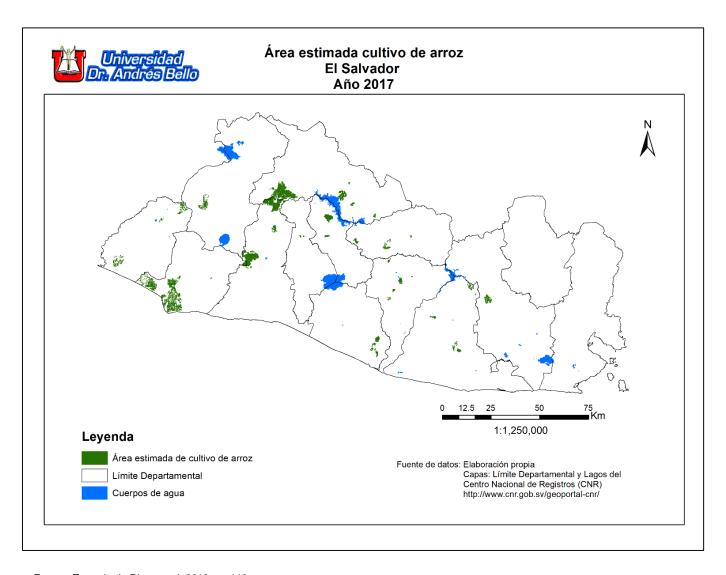


Figura 25. Mapa nacional, área estimada cultivo de arroz, 2017

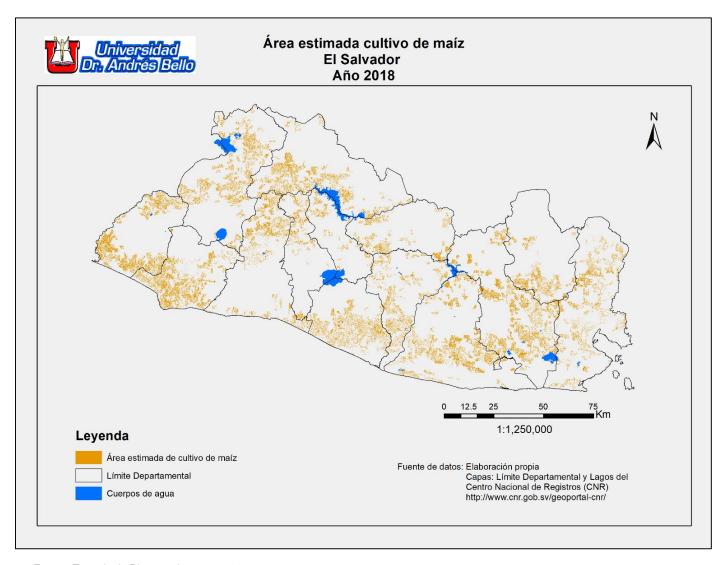


Figura 26. Mapa nacional, área estimada cultivo de maíz, 2018

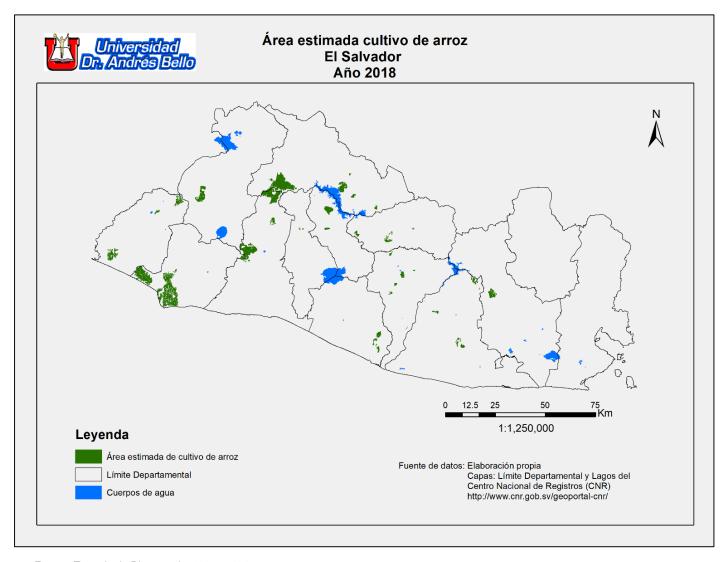


Figura 27. Mapa nacional, área estimada cultivo de arroz, 2018

2.3.2 Información sobre cultivos, rendimiento y precios

Esta información está compuesta por generalidades de clasificación taxonómica, morfología, etapas fenológicas, requerimientos edafoclimáticos, potencial de rendimiento y precio anual promedio a nivel mayorista y consumidor.

2.3.3 Base de datos de temperatura, humedad relativa y precipitación del Observatorio Ambiental, periodo 2013-2018.

La base de datos fue solicitada al Observatorio Ambiental del MARN, y posteriormente proporcionada por dicha institución. El conjunto de datos recibido estaba compuesto por 25 estaciones meteorológicas para el periodo de estudio; de las cuales, por motivos de suficiencia de datos, se retiraron del registro tres estaciones; logrando realizar el análisis estadístico con 22 estaciones que presentaban datos completos en el periodo de tiempo referido.

2.4 Tratamiento de la información

2.4.1 Base de datos de temperatura, humedad relativa y precipitación

2.4.1.1 Revisión y depuración de base de datos

La base de datos compartida por el MARN estaba compuesta por registros de 25 estaciones meteorológicas en el periodo de estudio 2013 a 2018, de las cuales se eliminaron 3, pues dichas estaciones no presentaban registros en los meses de marzo a diciembre 2013, enero a diciembre 2014, enero a octubre 2015 y marzo 2017; por lo cual, la base de datos depurada quedó conformada por 22 estaciones meteorológicas.

2.4.1.2 Cálculo de valores anuales de parámetros ambientales

Ya que los valores de los datos de las 22 estaciones meteorológicas eran mensuales, fue necesario calcular un promedio anual tanto de temperatura como para humedad relativa, y finalmente el cálculo de precipitación acumulada de forma anual, conformando con los datos anteriores, tablas anuales.

2.4.1.3 Georreferenciación de estaciones meteorológicas en capa vectorial

Dado que cada estación meteorológica poseía en registro sus coordenadas geográficas, se realizó la georreferenciación de dichas estaciones en Arcmap, mediante un procedimiento denominado "agregar coordenadas xy" definiendo el Sistema de Referencia de Coordenadas (SRC) y el formato de coordenadas (en este caso decimal), con el cual se logró ubicar en una capa vectorial de puntos, las estaciones incluidas en la investigación.

2.4.1.4 Interpolación de datos

La interpolación de datos se realizó utilizando la herramienta de análisis espacial de Arcmap denominada "IDW", con la cual se obtuvieron capas ráster de todos los parámetros ambientales, mediante el uso de la capa vectorial de las estaciones meteorológicas, y teniendo como área de delimitación la capa vectorial de polígono del límite departamental del CNR. Básicamente la interpolación fue útil para obtener los valores máximos, mínimos, promedios de precipitación, temperatura y humedad relativa a nivel nacional, para cada año del periodo de estudio.

2.4.1.5 Procesamiento estadístico

Para conformar la base de datos, se elaboró una capa vectorial de puntos, con la que se capturaron los valores de las capas raster obtenidas de la interpolación hecha para los parámetros ambientales. La captura de valores también se realizó en las capas de áreas estimadas de cultivos, obtenidas por Rivas et al. (2020).

Posteriormente se ejecutó un análisis de correlación bivariada, donde se identificaron coeficientes de correlación entre las variables ya mencionadas anteriormente, además de conocer que tan significativo (en niveles 0.05 y 0.01) era cada coeficiente. Por otra parte, se construyeron modelos de regresión lineal múltiple para cada cultivo por año, donde en todos los casos la variable dependiente fue el área estimada según correspondiera, y como variables independientes, los parámetros ambientales; identificando el porcentaje de variación del área estimada de cada cultivo por año que puede ser explicada a partir de cada modelo de regresión, según el coeficiente de determinación ajustado obtenido.

2.4.2 Áreas estimadas de cultivos maíz y arroz

Las capas vectoriales de áreas estimadas de maíz y arroz para el periodo de estudio, fueron utilizadas específicamente para extraer los valores del área de polígonos obtenida en cada año para cada cultivo respectivamente. Como ya se mencionó anteriormente, una capa vectorial de polígonos contiene entidades geométricas de diferentes formas, sobre todo irregulares. En este sentido, del atributo "área" de la tabla de registro asociada a cada cultivo, se obtuvo el valor del área de cada polígono.

Posteriormente, se realizó un vaciado de datos del área nacional obtenida para cada cultivo, por año. Al mismo tiempo se registraron los promedios anuales de temperatura y humedad relativa y el acumulado anual de precipitación (según los valores obtenidos en los mapas realizados mediante el método geoestadístico "IDW"), para tener clara la variación del área de cada cultivo y el comportamiento de los parámetros ambientales incluidos en la investigación.

2.4.3 Rendimiento potencial y precio promedio anual

Teniendo en cuenta el rendimiento potencial de las 6 variedades de maíz, se calculó un rendimiento promedio de 80.83 qq/mz (quintales por manzana) tomando como referencia el rendimiento mínimo de cada variedad, siendo útil para estimar la producción de este cultivo en cada año, según el área nacional obtenida de la capa vectorial de polígonos. En el caso de ambos cultivos se optó por realizar una conversión del rendimiento (con un factor de conversión de 1.43082805) para obtener quintales por hectárea (qq/Ha), ya que la unidad de área de las capas vectoriales de ambos cultivos se encontraba expresada en hectáreas. Por tanto, aplicando dicha conversión el rendimiento promedio del maíz fue de 115.65 qq/Ha. De igual forma en el caso del arroz, se incluyeron las 6 variedades de dicho cultivo con su respectivo rendimiento, a partir del cual se calculó un rendimiento promedio de 178.92 qq/mz, equivalente a 256.00 qq/Ha.

Los precios promedio a nivel mayorista de ambos cultivos, fueron tomados de los anuarios de estadísticas agropecuaria de la DGEA del MAG.

3. RESULTADOS

3.1 Nacional

En este apartado de resultados nacionales, se presentan los mapas de precipitación, temperatura y humedad relativa. En el caso de los valores de lluvia, los más bajos son representados con color rojo, y los valores altos, con color verde. La simbología de los mapas de temperatura y humedad relativa es la siguiente: valores bajos (color verde) y valores altos (color rojo).

Para obtener los valores máximos, mínimos y promedios de los tres parámetros ambientales incluidos en esta investigación, se utilizó el método de interpolación denominado IDW (distancia inversa ponderada), donde se tuvieron como base los registros de cada año, proporcionados por el MARN.

Luego de los mapas, se presenta el análisis de correlación entre las áreas estimadas de cada cultivo, y los parámetros ambientales. Es importante mencionar que para realizar este análisis fue necesario realizar la extracción de: valores de las capas ráster obtenidas de la interpolación y de los valores de las capas vectoriales de áreas estimadas obtenidas en el proyecto de tecnología 2019 de la Universidad Dr. Andrés Bello. Tal como podrá comprobarse, los valores de las correlaciones para cada cultivo; incluso en el mismo año, son diferentes entre los parámetros ambientales; y esto se debe a que la extracción de valores se realizó con capas vectoriales densas de puntos, las cuales abarcaron exactamente las áreas estimadas de los cultivos para cada año, ya que dichas áreas son diferentes.

Posteriormente se presentan los modelos de regresión lineal múltiple, que permiten conocer en qué medida los parámetros ambientales pueden explicar la fluctuación de las áreas estimadas de cada cultivo, para cada año.

También se incluyen tablas y gráficos que contienen la variación de las áreas de cada cultivo, los precios, y parámetros ambientales.

Finalmente, se presenta la estimación económica de la producción por cada cultivo, identificando así, cómo los parámetros ambientales han tenido un efecto positivo o negativo, lo cual incluye la disminución de la producción en quintales y el aumento de precios.

3.1.1 Mapas nacionales de precipitación

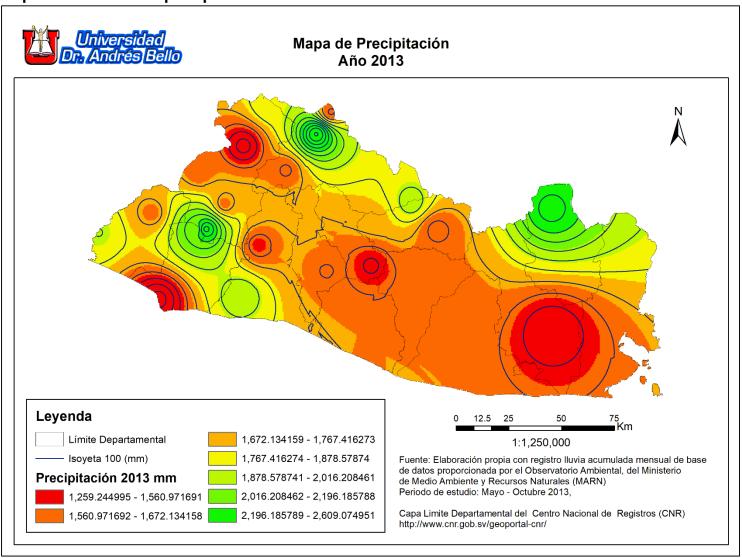


Figura 28. Mapa nacional de precipitación, 2013

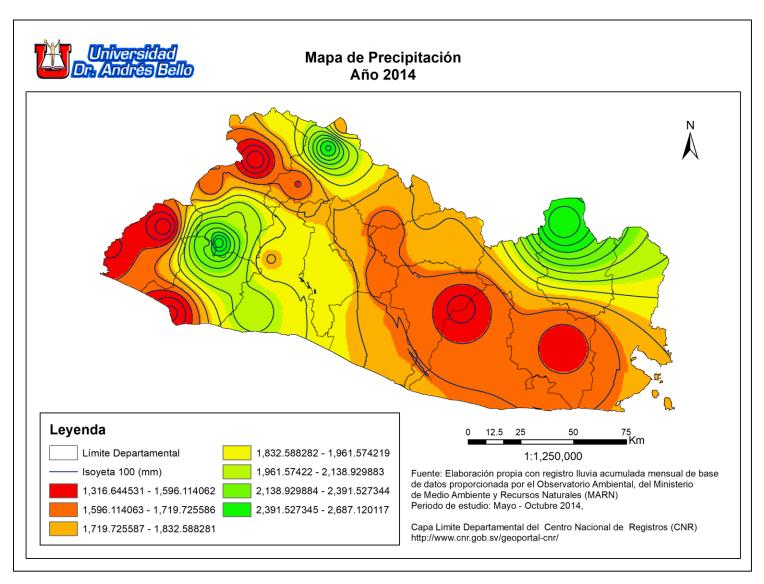


Figura 29. Mapa nacional de precipitación, 2014

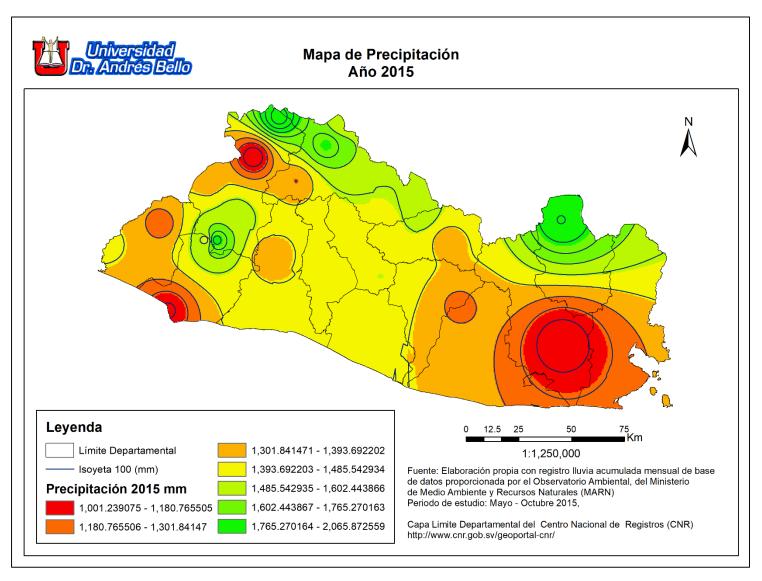


Figura 30. Mapa nacional de precipitación, 2015

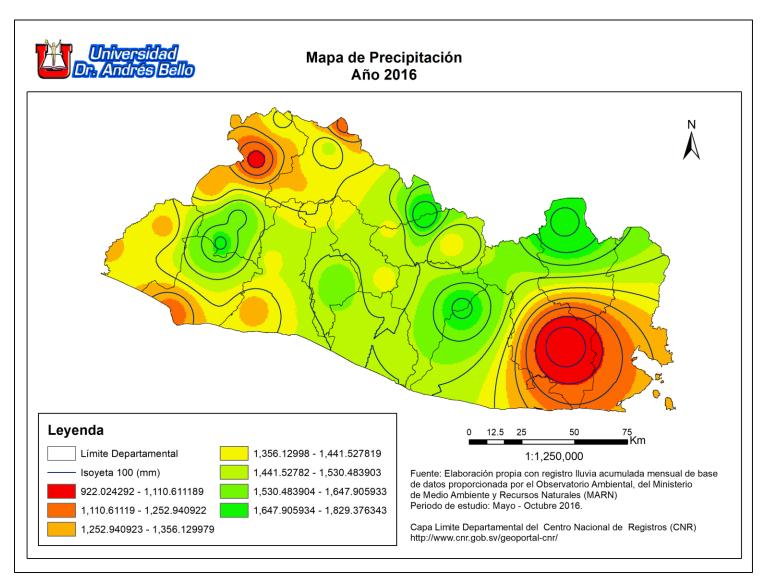


Figura 31. Mapa nacional de precipitación, 2016

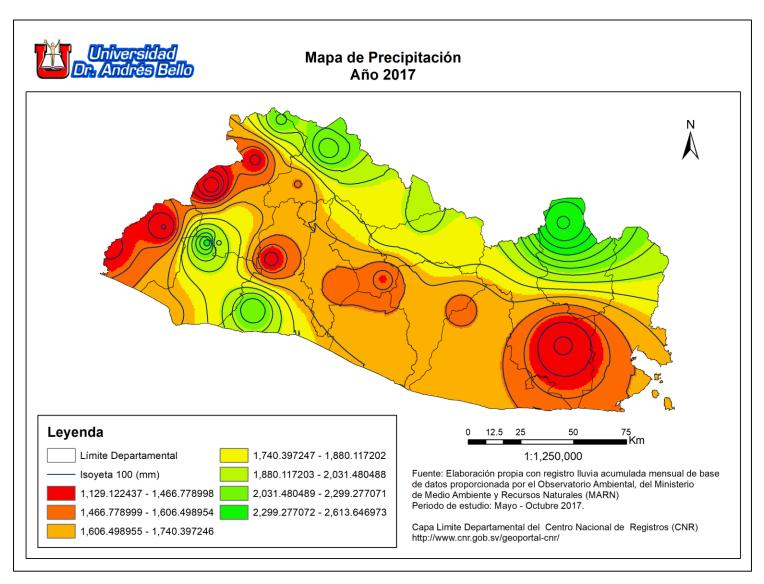


Figura 32. Mapa nacional de precipitación, 2017

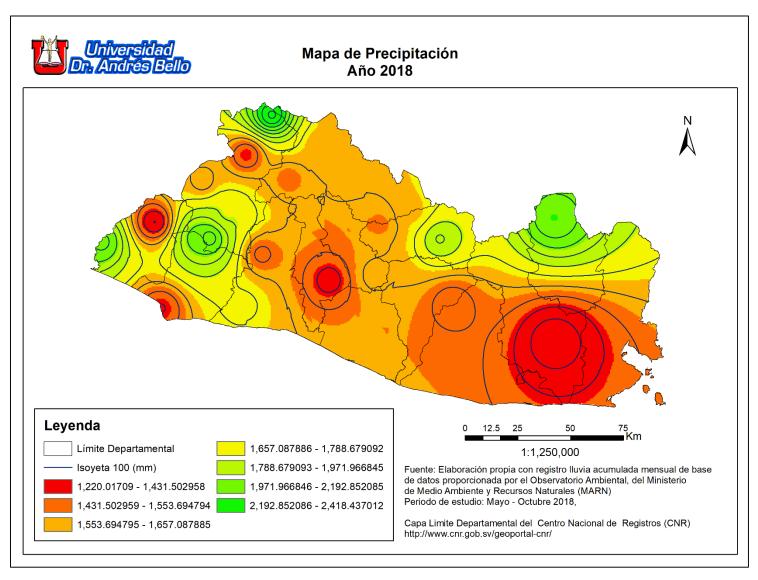


Figura 33. Mapa nacional de precipitación, 2018

3.1.2 Mapas nacionales de temperatura

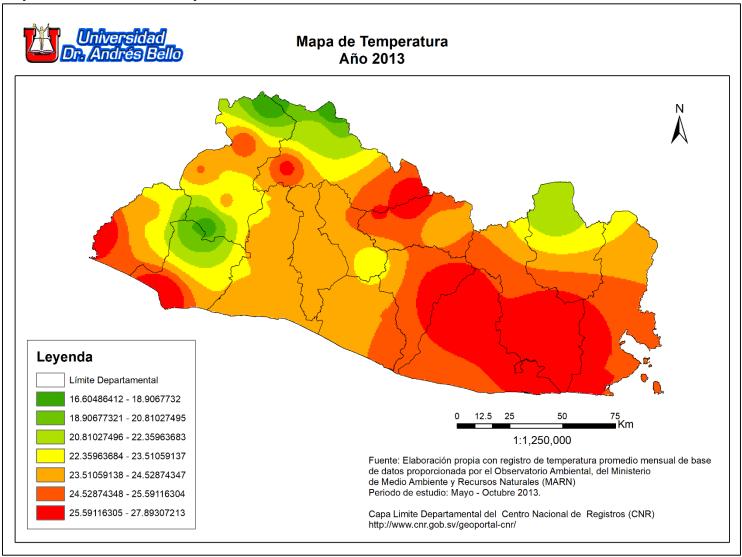


Figura 34. Mapa nacional de temperatura, 2013

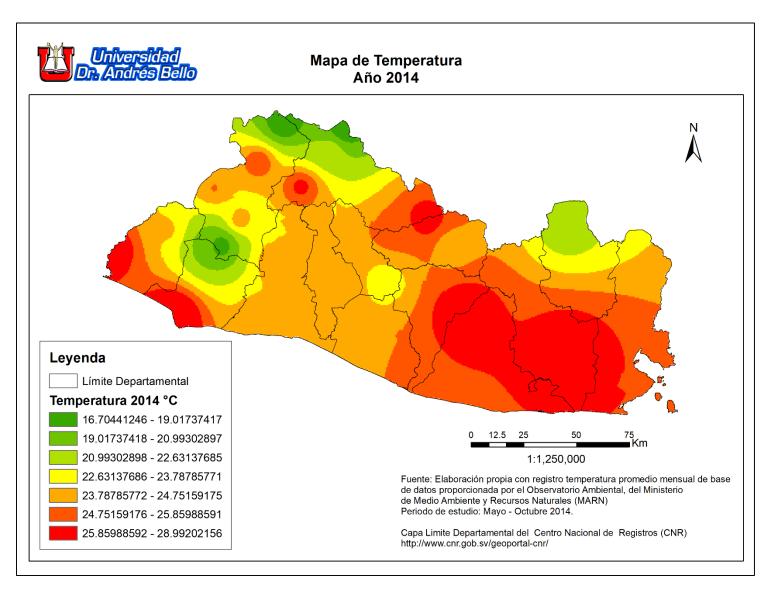


Figura 35. Mapa nacional de temperatura, 2014

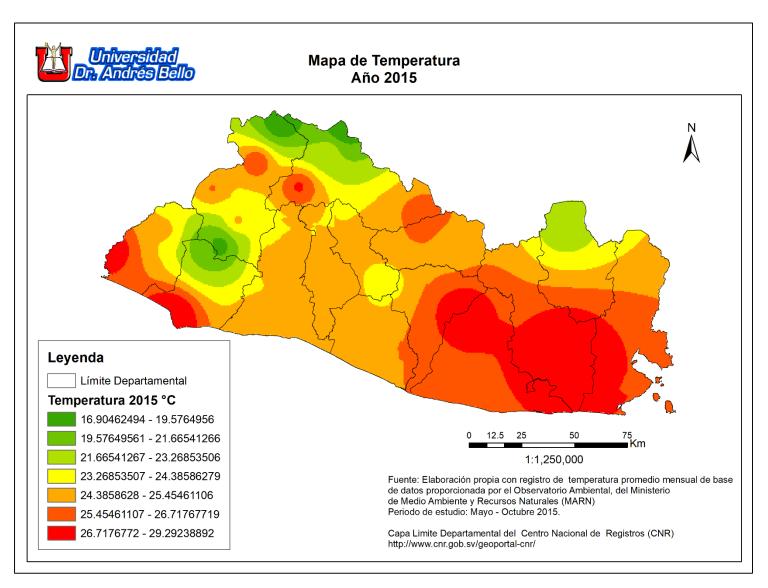


Figura 36. Mapa nacional de temperatura, 2015

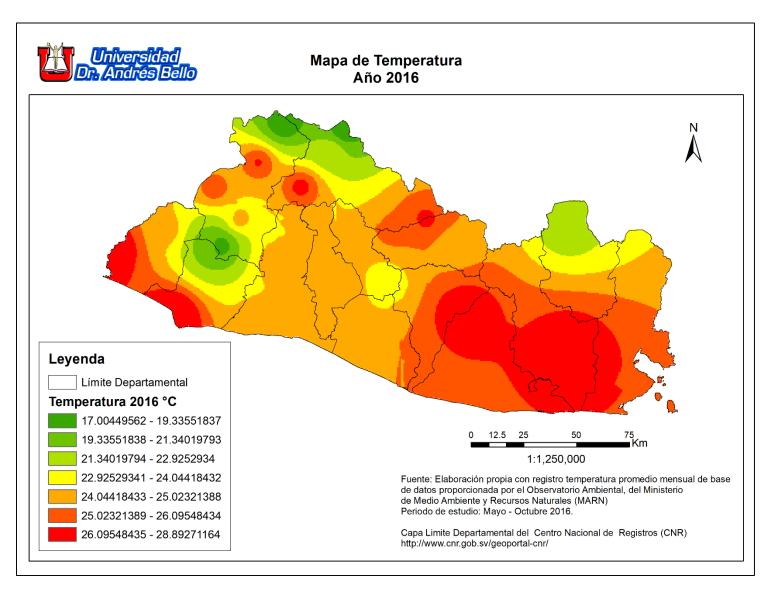


Figura 37. Mapa nacional de temperatura, 2016

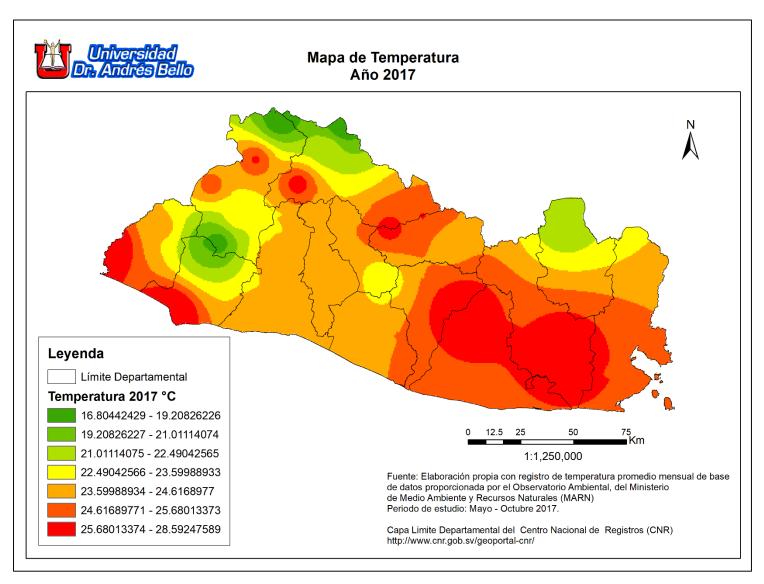


Figura 38. Mapa nacional de temperatura, 2017

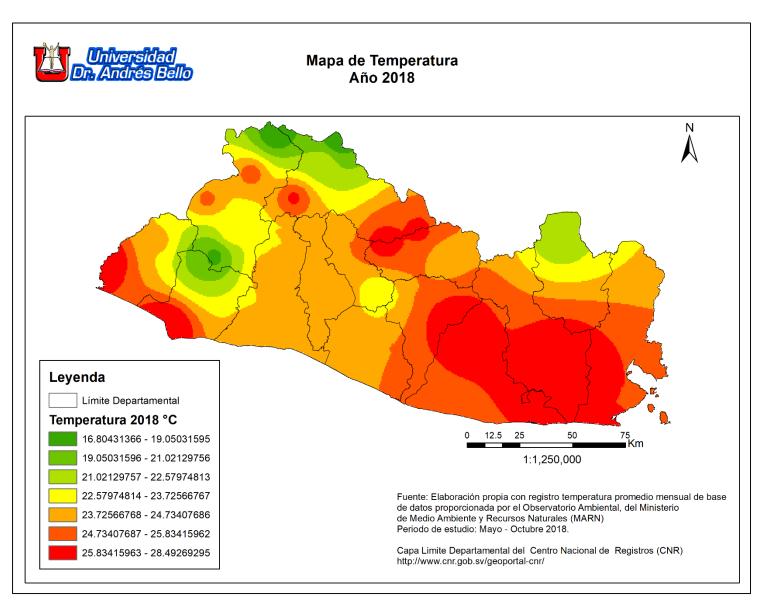


Figura 39. Mapa nacional de temperatura, 2018

3.1.3 Mapas nacionales de humedad relativa

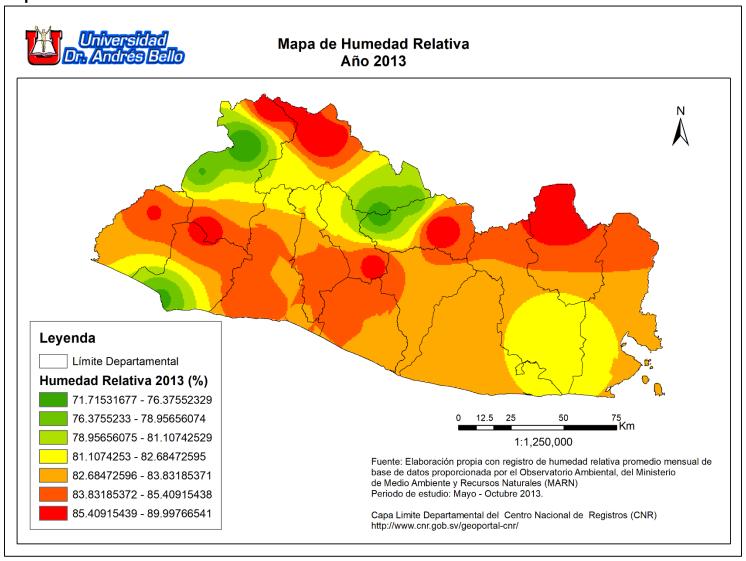


Figura 40. Mapa nacional de humedad relativa, 2013

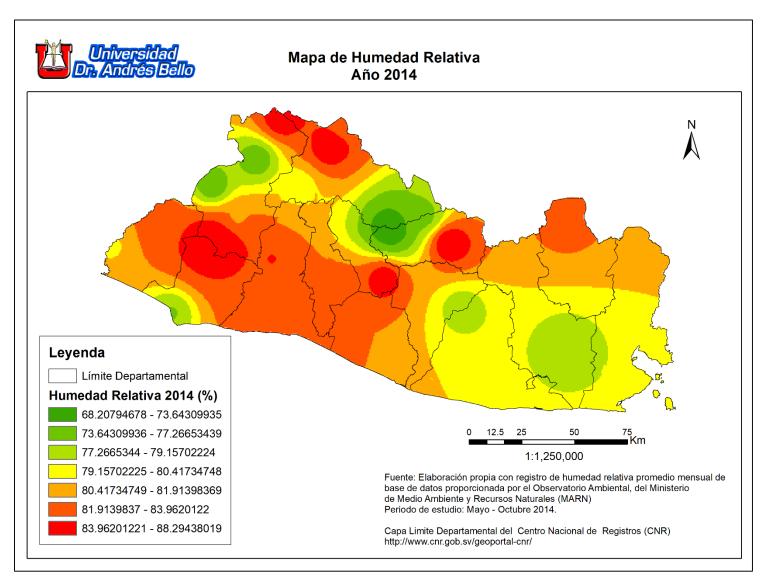


Figura 41. Mapa nacional de humedad relativa, 2014

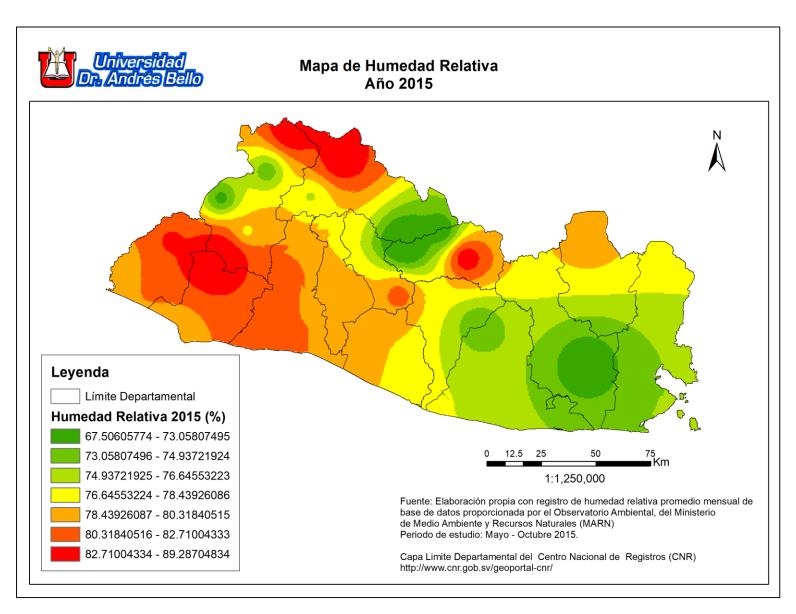


Figura 42. Mapa nacional de humedad relativa, 2015

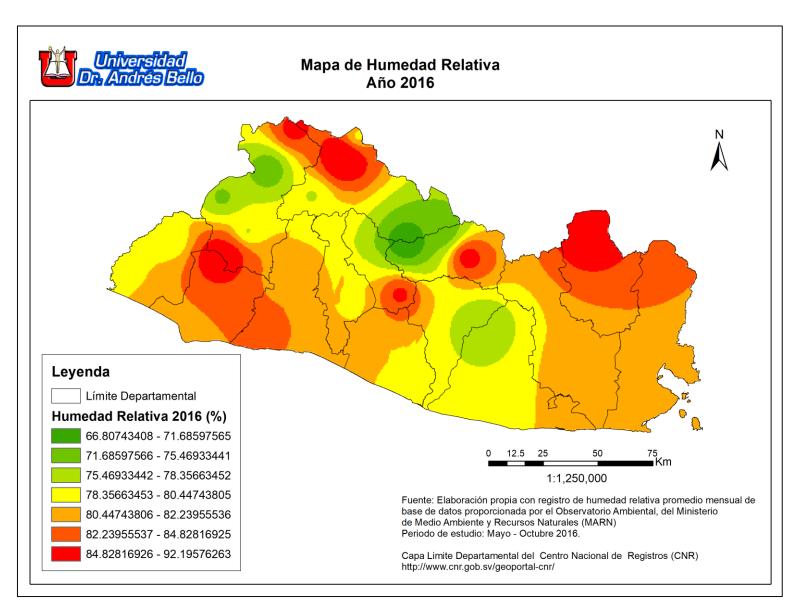


Figura 43. Mapa nacional de humedad relativa, 2016

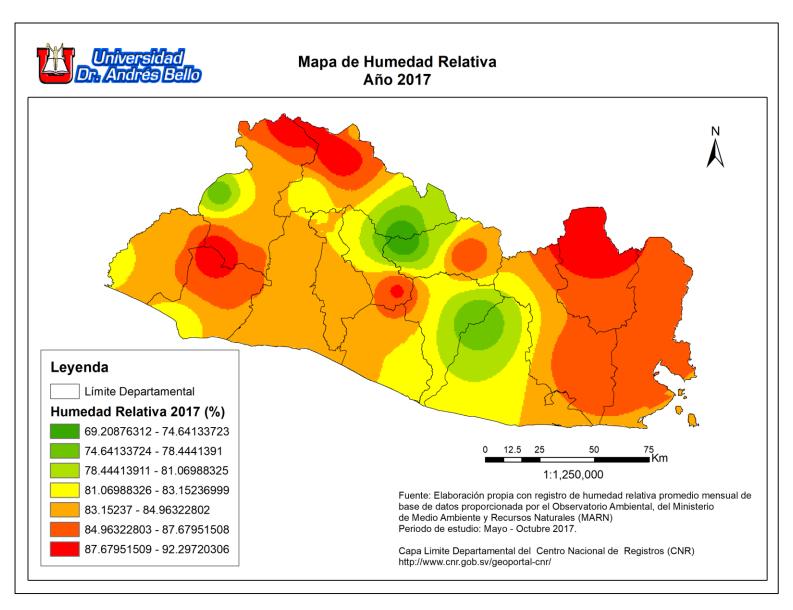


Figura 44. Mapa nacional de humedad relativa, 2017

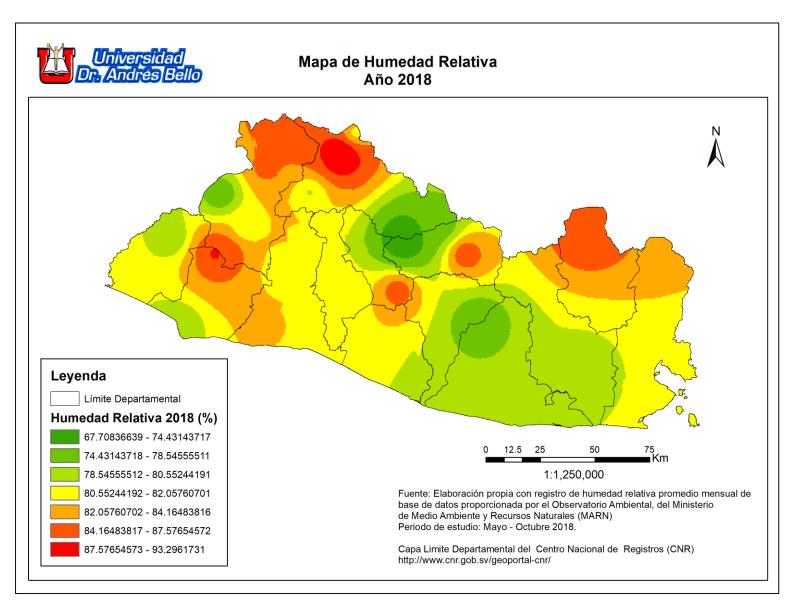


Figura 45. Mapa nacional de humedad relativa, 2018

3.1.4 Análisis de correlación nacional

	Correlacio	ón bivariada	a arroz 2013, i	nacional	
		Área estimada cultivo arroz 2013	Precipitación 2013	Temperatura 2013	Humedad relativa 2013
Área estimada	Correlación de Pearson	1	236 ^{**}	.182**	145**
cultivo arroz 2013	Sig. (bilateral)		0.000	0.000	0.000
	N	12738	12738	12738	12738
Precipitación 2013	Correlación de Pearson	236**	1	708 ^{**}	.359**
	Sig. (bilateral)	0.000		0.000	0.000
	N	12738	12738	12738	12738
Temperatura 2013	Correlación de Pearson	.182**	708**	1	735**
	Sig. (bilateral)	0.000	0.000		0.000
	N	12738	12738	12738	12738
Humedad relativa 2013	Correlación de Pearson	145**	.359**	735**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	Ν	12738	12738	12738	12738
**. La correlació	ón es significat	iva en el nive	0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 5. Correlación bivariada arroz 2013, nacional

En la tabla de correlación bivariada del año 2013 para el cultivo de arroz a nivel nacional, se muestran tanto las variables incluidas para el análisis, como los coeficientes de correlación respectivos, evidenciando relaciones de tipo inversa y directa, con niveles de significatividad de 0.05 y 0.01.

Si bien es cierto, las correlaciones más altas se encuentran entre temperatura y humedad relativa (R= -0.735) y entre precipitación y temperatura (R= -0.708), ambas significativas en nivel 0.01; también se determinó que el área estimada de cultivo de arroz para el año 2013, tiene correlación con los tres parámetros ambientales incluidos en esta investigación: con precipitación (R= -0.236), con temperatura (R=0.182) y humedad relativa (R= -0.145); presentando en los tres casos una significatividad en el nivel 0.01.

	Correlaci	ón bivariada	a maíz 2013, r	nacional	
		Área estimada cultivo maíz 2013	Precipitación 2013	Temperatura 2013	Humedad relativa 2013
Área estimada	Correlación de Pearson	1	108 ^{**}	.133 ^{**}	014**
cultivo maíz 2013	Sig. (bilateral)		0.000	0.000	0.000
	Ν	2201815	2201815	2201815	2201815
Precipitación 2013	Correlación de Pearson	108**	1	641**	.403**
	Sig. (bilateral)	0.000		0.000	0.000
	N	2201815	2201815	2201815	2201815
Temperatura 2013	Correlación de Pearson	.133**	641 ^{**}	1	257**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2201815	2201815	2201815	2201815
Humedad relativa 2013	Correlación de Pearson	014**	.403**	257**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	2201815	2201815	2201815	2201815
**. La correlació	ón es significat	tiva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 6. Correlación bivariada maíz 2013, nacional

Siempre en el año 2013, pero en el caso del cultivo de maíz, las correlaciones más altas son entre los parámetros ambientales (al igual que en el cultivo del arroz), siendo las siguientes: precipitación y temperatura (R= -0.641); precipitación y humedad relativa (R= 0.403); temperatura y humedad relativa (R= -0.257). Esta última correlación responde a la relación inversa que por lo general existe entre dichas variables.

El área estimada de cultivo de maíz en 2013 presentó correlación con los tres parámetros ambientales, obteniendo en los tres casos nivel significativo de 0.01; con coeficientes: precipitación (R= -0.108), temperatura (0.133) y humedad relativa (R= -0.014), siendo este último coeficiente mucho más bajo que el de la relación identificada entre el área estimada de arroz y la humedad relativa del mismo año.

	Correlacio	ón bivariada	a arroz 2014, ı	nacional	
		Área estimada cultivo arroz 2014	Precipitación 2014	Temperatura 2014	Humedad relativa 2014
Área estimada	Correlación de Pearson	1	.174**	149**	.226**
cultivo arroz 2014	Sig. (bilateral)		0.000	0.000	0.000
	N	48625	48625	48625	48625
Precipitación 2014	Correlación de Pearson	.174**	1	936**	.624**
	Sig. (bilateral)	0.000		0.000	0.000
	N	48625	48625	48625	48625
Temperatura 2014	Correlación de Pearson	149 ^{**}	936 ^{**}	1	543**
	Sig. (bilateral)	0.000	0.000		0.000
	N	48625	48625	48625	48625
Humedad relativa 2014	Correlación de Pearson	.226**	.624**	543 ^{**}	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	48625	48625	48625	48625
**. La correlació	on es significat	tiva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 7. Correlación bivariada arroz 2014, nacional*

En el año 2014 la base de datos de parámetros ambientales (con un total de 48,625 registros) obtenida de la interpolación realizada, presenta dos correlaciones directas y una inversa con el área estimada del cultivo de arroz para dicho año. Según el siguiente detalle se identificó relación del área de arroz con: precipitación (R=0.174), temperatura (R=-0.149) y humedad relativa (R=0.226).

Se obtuvieron diferentes correlaciones entre parámetros ambientales, claramente más altas que las obtenidas con el área estimada del cultivo de arroz. Precipitación y temperatura (R= -0.936), humedad relativa y precipitación (R= 0.624), temperatura y humedad relativa (R= -0.543). En este caso, todas las correlaciones mencionadas, son en el nivel 0.01.

	Correlaci	ón bivariada	a maíz 2014, r	nacional	
		Área estimada cultivo maíz 2014	Precipitación 2014	Temperatura 2014	Humedad relativa 2014
Área estimada	Correlación de Pearson	1	.041**	.041**	.054**
cultivo maíz 2014	Sig. (bilateral)		0.000	0.000	0.000
	Ν	2847328	2847328	2847328	2847328
Precipitación 2014	Correlación de Pearson	.041**	1	677**	.455**
	Sig. (bilateral)	0.000		0.000	0.000
	N	2847328	2847328	2847328	2847328
Temperatura 2014	Correlación de Pearson	.041**	677**	1	538**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2847328	2847328	2847328	2847328
Humedad relativa 2014	Correlación de Pearson	.054**	.455**	538**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	2847328	2847328	2847328	2847328
**. La correlació	ón es significat	iva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 8. Correlación bivariada maíz 2014, nacional*

Contrario al cultivo de arroz, el área estimada de cultivo de maíz presentó correlaciones muy bajas con los parámetros ambientales. Por ejemplo, la correlación entre el área de maíz y la precipitación fue la misma entre dicha área estimada y la temperatura (R= 0.041), con un nivel significativo de 0.01. En el caso de la humedad relativa, obtuvo un coeficiente de correlación de 0.054 con el área de maíz.

Con la finalidad de identificar diferencias entre los resultados nacionales y de la zona oriental, en los siguientes apartados se detallan los coeficientes de correlación obtenidos en dicha zona, y en algunos casos para el mismo año y área de cultivo, estos coeficientes son mayores a los obtenidos a nivel nacional.

	Correlacio	ón bivariada	a arroz 2015, i	nacional	
		Área estimada cultivo arroz 2015	Precipitación 2015	Temperatura 2015	Humedad relativa 2015
Área estimada	Correlación de Pearson	1	.040**	139**	.179**
cultivo arroz 2015	Sig. (bilateral)		0.000	0.000	0.000
	N	15224	15224	15224	15224
Precipitación 2015	Correlación de Pearson	.040**	1	818**	328**
	Sig. (bilateral)	0.000		0.000	0.000
	N	15224	15224	15224	15224
Temperatura 2015	Correlación de Pearson	139 ^{**}	818**	1	221**
	Sig. (bilateral)	0.000	0.000		0.000
	N	15224	15224	15224	15224
Humedad relativa 2015	Correlación de Pearson	.179**	328**	221**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	15224	15224	15224	15224
**. La correlació	ón es significat	tiva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 9. Correlación bivariada arroz 2015, nacional*

Para el año 2015, la base de datos del área estimada de cultivo de arroz estuvo compuesta por 15,224 registros, obtenidos de la capa ráster que fue elaborada mediante el método de interpolación IDW. En este caso, dicha área presentó las correlaciones más altas con los parámetros ambientales: temperatura (R= -0.139) y humedad relativa (R= 0.179), siendo relaciones inversa y directa, respectivamente. La correlación más baja del área de arroz se obtuvo con la precipitación (R= 0.04). A pesar de los coeficientes obtenidos, la significatividad en los tres casos fue en el nivel 0.01.

Posterior al apartado de análisis de correlación se encuentran los modelos de regresión lineal, por año para cada cultivo, donde se puede evidenciar cómo los coeficientes de correlación aportan en la construcción de los modelos planteados.

	Correlaci	ón bivariada	a maíz 2015, r	nacional	
		Área estimada cultivo maíz 2015	Precipitación 2015	Temperatura 2015	Humedad relativa 2015
Área estimada	Correlación de Pearson	1	023**	.035**	098**
cultivo maíz 2015	Sig. (bilateral)		0.000	0.000	0.000
	Ν	2026994	2026994	2026994	2026994
Precipitación 2015	Correlación de Pearson	023**	1	774**	.288**
	Sig. (bilateral)	0.000		0.000	0.000
	N	2026994	2026994	2026994	2026994
Temperatura 2015	Correlación de Pearson	.035**	774**	1	497**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2026994	2026994	2026994	2026994
Humedad relativa 2015	Correlación de Pearson	098**	.288**	497**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	2026994	2026994	2026994	2026994
**. La correlació	ón es significat	tiva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 10. Correlación bivariada maíz 2015, nacional*

Para el año 2015, aunque muy bajos, se identificaron coeficientes de correlaciones entre el área estimada de maíz con los parámetros ambientales, en el siguiente orden: humedad relativa (R= -0.098), temperatura (R= 0.035) y precipitación (R= -0.023). Es importante mencionar que dichas correlaciones son significativas en el nivel 0.01.

Se obtuvieron dos correlaciones de tipo inversa y una correlación directa entre los parámetros ambientales: precipitación y temperatura (R= -0.774); temperatura y humedad relativa (R= -0.497). Finalmente, la correlación entre precipitación y humedad relativa, con un coeficiente R= 0.288.

	Correlacio	ón bivariada	a arroz 2016, ı	nacional	
		Área estimada cultivo arroz 2016	Precipitación 2016	Temperatura 2016	Humedad relativa 2016
Área estimada	Correlación de Pearson	1	031**	057**	.037**
cultivo arroz 2016	Sig. (bilateral)		0.000	0.000	0.000
	N	32344	32344	32344	32344
Precipitación 2016	Correlación de Pearson	031**	1	699**	127**
	Sig. (bilateral)	0.000		0.000	0.000
	N	32344	32344	32344	32344
Temperatura 2016	Correlación de Pearson	057**	699 ^{**}	1	.037**
	Sig. (bilateral)	0.000	0.000		0.000
	N	32344	32344	32344	32344
Humedad relativa 2016	Correlación de Pearson	.037**	127**	.037**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	32344	32344	32344	32344
**. La correlació	ón es significat	tiva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 11. Correlación bivariada arroz 2016, nacional*

En el caso del cultivo de arroz para el año 2016, obtuvo correlación con los tres parámetros ambientales incluidos en la investigación, en el siguiente orden: temperatura (R= -0.057), humedad relativa (R= 0.037) y precipitación (R= -0.031); lo cual es valioso, ya que a pesar que son coeficientes bajos, presentan significatividad en el nivel 0.01; además de tener en cuenta que los registros de parámetros ambientales, provienen de una fuente distinta de donde se estimó el área de arroz.

La precipitación tuvo un coeficiente de correlación de R= -0.699 con la temperatura, y de R= -0.127 con la humedad relativa; con un nivel significativo de 0.01 en ambos casos. En el caso de la temperatura y la humedad relativa, no presentaron una correlación inversa (como generalmente sucede), obteniendo un R= 0.037.

	Correlaci	ón bivariada	a maíz 2016, r	nacional	
		Área estimada cultivo maíz 2016	Precipitación 2016	Temperatura 2016	Humedad relativa 2016
Área estimada	Correlación de Pearson	1	.024**	.073**	.074**
cultivo maíz 2016	Sig. (bilateral)		0.000	0.000	0.000
	N	2478823	2478823	2478823	2478823
Precipitación 2016	Correlación de Pearson	.024**	1	445**	195**
	Sig. (bilateral)	0.000		0.000	0.000
	Ν	2478823	2478823	2478823	2478823
Temperatura 2016	Correlación de Pearson	.073**	445**	1	082**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2478823	2478823	2478823	2478823
Humedad relativa 2016	Correlación de Pearson	.074**	195**	082**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	2478823	2478823	2478823	2478823
**. La correlació	n es significat	iva en el nive	0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 12. Correlación bivariada maíz 2016, nacional*

El área estimada de cultivo de maíz en el año 2016 con un total de 2,478,823 registros, presentó coeficientes de correlación con los tres parámetros ambientales, en el siguiente orden: humedad relativa (R= 0.074), temperatura (R= 0.073) y precipitación (R= 0.024), siendo todos significativos en nivel 0.01.

Por otra parte, hubo correlaciones inversas entre todos los parámetros ambientales, según el siguiente detalle: precipitación y temperatura (R= -0.445), precipitación y humedad relativa (R= -0.195), temperatura y humedad relativa (R= -0.082). Estos coeficientes también presentaron significatividad en el nivel 0.01.

	Correlacio	ón bivariada	a arroz 2017, i	nacional			
		Área estimada cultivo arroz 2017	Precipitación 2017	Temperatura 2017	Humedad relativa 2017		
Área estimada	Correlación de Pearson	1	009*	143**	.015**		
cultivo arroz 2017	Sig. (bilateral)		0.024	0.000	0.000		
	N	59311	59311	59311	59311		
Precipitación 2017	Correlación de Pearson	009*	1	.223**	667**		
	Sig. (bilateral)	0.024		0.000	0.000		
	N	59311	59311	59311	59311		
Temperatura 2017	Correlación de Pearson	143**	.223**	1	340**		
	Sig. (bilateral)	0.000	0.000		0.000		
	N	59311	59311	59311	59311		
Humedad relativa 2017	Correlación de Pearson	.015**	667**	340**	1		
	Sig. (bilateral)	0.000	0.000	0.000			
	Ň	59311	59311	59311	59311		
*. La correlación	*. La correlación es significativa en el nivel 0,05 (bilateral).						
**. La correlació	ón es significat	tiva en el nive	l 0,01 (bilateral)				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 13. Correlación bivariada arroz 2017, nacional*

Inicialmente es importante resaltar que en este año, el área estimada de cultivo de arroz obtuvo el coeficiente de correlación más bajo de todo el periodo de estudio, siendo R= -0.009; además de tener significatividad en el nivel 0.05, que indica poca relación entre estas dos variables. El área estimada de este cultivo presentó correlación con la temperatura (R= -0.143) y con la humedad relativa (R= 0.015), ambas con nivel significativo de 0.01.

En el caso de la relación entre los parámetros ambientales, se identificaron los siguientes coeficientes: precipitación y temperatura (R= 0.223), temperatura y humedad relativa (R= -0.340), precipitación y humedad relativa (R= -0.667).

	Correlaci	ón bivariada	a maíz 2017, r	nacional	
		Área estimada cultivo maíz 2017	Precipitación 2017	Temperatura 2017	Humedad relativa 2017
Área estimada	Correlación de Pearson	1	.060**	.066**	.038**
cultivo maíz 2017	Sig. (bilateral)		0.000	0.000	0.000
	N	2535097	2535097	2535097	2535097
Precipitación 2017	Correlación de Pearson	.060**	1	535**	.038**
	Sig. (bilateral)	0.000		0.000	0.000
	N	2535097	2535097	2535097	2535097
Temperatura 2017	Correlación de Pearson	.066**	535**	1	304**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2535097	2535097	2535097	2535097
Humedad relativa 2017	Correlación de Pearson	.038**	.038**	304**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	2535097	2535097	2535097	2535097
**. La correlació	ón es significat	iva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 14. Correlación bivariada maíz 2017, nacional*

En el año 2017, el área estimada del cultivo de maíz, al igual que en años anteriores, presentó relación con los tres parámetros ambientales, obteniendo coeficientes bajos; aunque con significatividad en el nivel 0.01, según el detalle: temperatura (R= 0.066), precipitación (R= 0.060) y humedad relativa (R= 0.038).

El coeficiente de correlación obtenido en este año entre precipitación y temperatura (R=-0.535), presenta mucha similitud con los obtenidos en años anteriores, incluso en el nivel de significativo de 0.01. La precipitación también tuvo un coeficiente de R= 0.038 en relación a la humedad relativa, igualmente con significatividad de 0.01. Finalmente, la temperatura obtuvo un R= -0.304 con la humedad relativa.

	Correlacio	ón bivariada	a arroz 2018, ı	nacional	
		Área estimada cultivo arroz 2018	Precipitación 2018	Temperatura 2018	Humedad relativa 2018
Área estimada	Correlación de Pearson	1	.142**	169 ^{**}	.123**
cultivo arroz 2018	Sig. (bilateral)		0.000	0.000	0.000
	N	75312	75312	75312	75312
Precipitación 2018	Correlación de Pearson	.142**	1	499**	.262**
	Sig. (bilateral)	0.000		0.000	0.000
	N	75312	75312	75312	75312
Temperatura 2018	Correlación de Pearson	169 ^{**}	499**	1	391**
	Sig. (bilateral)	0.000	0.000		0.000
	N	75312	75312	75312	75312
Humedad relativa 2018	Correlación de Pearson	.123**	.262**	391**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	75312	75312	75312	75312
**. La correlació	ón es significat	tiva en el nive	l 0,01 (bilateral)		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 15. Correlación bivariada arroz 2018, nacional*

Los coeficientes de correlación obtenidos por el área estimada del cultivo de arroz en relación a los parámetros ambientales en el año 2018 son similares a los obtenidos para los años 2013 y 2014. En este caso, dicha área tuvo correlación con precipitación (R= 0.142), temperatura (R= -0.169) y humedad relativa (R= 0.123); con significatividad en nivel 0.01 en los tres casos.

Como en años anteriores, los parámetros ambientales presentaron relación inversa en dos casos: precipitación y temperatura (R= -0.499), temperatura y humedad relativa (R= -0.391); además de una relación directa entre precipitación y humedad relativa (R= 0.262).

	Correlació	n bivariad	a maíz 2018, i	nacional	
		Área estimada cultivo maíz 2018	Precipitación 2018	Temperatura 2018	Humedad relativa 2018
Área estimada	Correlación de Pearson	1	021**	.024**	007**
cultivo maíz 2018	Sig. (bilateral)		0.000	0.000	0.000
	N	2102963	2102963	2102963	2102963
Precipitación 2018	Correlación de Pearson	021**	1	512 ^{**}	.363**
	Sig. (bilateral)	0.000		0.000	0.000
	N	2102963	2102963	2102963	2102963
Temperatura 2018	Correlación de Pearson	.024**	512**	1	571**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2102963	2102963	2102963	2102963
Humedad relativa 2018	Correlación de Pearson	007**	.363**	571**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	2102963	2102963	2102963	2102963
**. La correlació	ón es significat	iva en el niv	el 0,01 (bilatera	al).	

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 16. Correlación bivariada maíz 2018, nacional*

El área estimada del cultivo de maíz para el año 2018 estuvo constituida por un total de 2,102,963 registros capturados de las capas correspondientes, en donde se identificó la correlación más baja de todos los años entre dicha área y la humedad relativa, con un coeficiente de R= -0.007, con un nivel de significatividad de 0.01. Los parámetros precipitación y temperatura también presentaron coeficientes R= -0.021 y R= 0.024 con el área de maíz, respectivamente.

La relación entre los parámetros ambientales ha sido identificada según los coeficientes de correlación obtenidos en este año, con el siguiente detalle: precipitación y temperatura (R= -0.512), temperatura y humedad relativa (R= -0.571), precipitación y humedad relativa (R= 0.363); en general con significatividad en el nivel 0.01.

3.1.5 Modelos de regresión lineal anuales por cultivo

A continuación, se presentan los modelos de regresión lineal para cada cultivo, obtenidos mediante procesamiento estadístico de la base de datos. En todos los casos, la variable dependiente (a predecir) fue el área estimada de cada cultivo, y las variables independientes (predictores) los parámetros ambientales.

Año 2013

Arroz

	7							
	Modelo de regresión lineal nacional, arroz 2013							
Modelo	R	R cuadrado	R cuadrado ajustado	Error estándar de la estimación				
1	.248ª	0.062	0.061	4.85917				
a. Predict	a. Predictores: (Constante). Humedad relativa 2013. Precipitación 2013. Temperatura 2013							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 17. Resumen modelo de regresión lineal nacional, arroz 2013*

ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.			
1	Regresión	19705.295	3	6568.432	278.188	.000b			
	Residuo	300668.719	12734	23.611					
	Total	320374.014	12737						
a. Variab	a. Variable dependiente: Área estimada cultivo arroz 2013								
h Predic	tores: (Const	ante) Humedad relativ	a 2013 F	Precipitación 2013 T	emperatura	2013			

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 18. Análisis de varianza, modelo de regresión lineal nacional, arroz 2013*

Maíz

	Modelo de regresión lineal nacional, maíz 2013							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estima							
1	.140a	0.020	0.020	166.13234				
a. Predict	tores: (C	onstante), Hun	nedad relativa 2013, Tem	nperatura 2013, Precipitación 2013				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 19. Resumen modelo de regresión lineal nacional, maíz 2013

ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.			
1	Regresión	1210115954.876	3	403371984.959	14614.950	.000b			
	Residuo	60769885931.294	2201811	27599.956					
	Total	61980001886.170	2201814						
a. Variable dependiente: Área estimada cultivo maíz 2013									
b. Predic	tores: (Cons	tante), Humedad relativ	va 2013, Te	mperatura 2013, Pr	ecipitación 20	013			

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 20. Análisis de varianza, modelo de regresión lineal nacional, maíz 2013*

Arroz

	Modelo de regresión lineal nacional, arroz 2014							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación							
1	.231ª	0.053	0.053	15.14419				
a. Predict	a. Predictores: (Constante), Humedad relativa 2014, Temperatura 2014, Precipitación 2014							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 21. Resumen modelo de regresión lineal nacional, arroz 2014

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	625775.370	3	208591.790	909.505	.000b					
	Residuo	11151050.262	48621	229.346							
	Total	11776825.632	48624								
a. Variab	a. Variable dependiente: Área estimada cultivo arroz 2014										
h Predic	tores: (Const	ante) Humedad relativ	a 2014 T	emperatura 2014 P	recinitació	n 2014					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 22. Análisis de varianza, modelo de regresión lineal nacional, arroz 2014

Maíz

Modelo de regresión lineal nacional, maíz 2014							
Modelo	delo R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1 .128 ^a 0.016 0.016 170.35320							
a. Predic	a. Predictores: (Constante), Humedad relativa 2014, Precipitación 2014, Temperatura 2014						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 23. Resumen modelo de regresión lineal nacional, maíz 2014

	ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	1380728626.494	3	460242875.498	15859.391	.000b				
	Residuo	82629944917.936	2847324	29020.212						
	Total	84010673544.430	2847327							
a. Variable dependiente: Área estimada cultivo maíz 2014										
h Predic	tores: (Cons	tante). Humedad relativ	/a 2014 Pr	ecinitación 2014. Te	mneratura 20	114				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 24. Análisis de varianza, modelo de regresión lineal nacional, maíz 2014

Arroz

Modelo de regresión lineal nacional, arroz 2015							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1 .208 ^a 0.043 0.043 2.59086							
a. Predic	a. Predictores: (Constante), Humedad relativa 2015, Temperatura 2015, Precipitación 2015						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 25. Resumen modelo de regresión lineal nacional, arroz 2015

ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	4610.533	3	1536.844	228.951	.000b				
	Residuo	102164.889	15220	6.713						
	Total	106775.422	15223							
a. Variab	le dependien	te: Área estimada cultiv	o arroz 2	2015						

b. Predictores: (Constante), Humedad relativa 2015, Temperatura 2015, Precipitación 2015

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 26. Análisis de varianza, modelo de regresión lineal nacional, arroz 2015

Maíz

Modelo de regresión lineal nacional, maíz 2015							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1	.100a	0.010	0.010	98.34933			
a. Predict	a. Predictores: (Constante), Humedad relativa 2015, Precipitación 2015, Temperatura 2015						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 27. Resumen modelo de regresión lineal nacional, maíz 2015

ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	199105604.006	3	66368534.669	6861.506	.000b				
	Residuo	19606244213.603	2026990	9672.590						
	Total	19805349817.609	2026993							
a Mariak	la danandiar	sto: Área estimada quiti	ivo moí= 20	1 <i>E</i>						

a. Variable dependiente: Area estimada cultivo maíz 2015

b. Predictores: (Constante), Humedad relativa 2015, Precipitación 2015, Temperatura 2015

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 28. Análisis de varianza, modelo de regresión lineal nacional, maíz 2015

Arroz

Modelo de regresión lineal nacional, arroz 2016							
Modelo	elo R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1	.117ª	0.014	0.014	8.96726			
a. Predict	a. Predictores: (Constante), Humedad relativa 2016, Temperatura 2016, Precipitación 2016						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 29. Resumen modelo de regresión lineal nacional, arroz 2016

ANOVAª										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	36213.589	3	12071.196	150.117	.000b				
	Residuo	2600513.838	32340	80.412						
	Total	2636727.428	32343							
a. Variable dependiente: Área estimada cultivo arroz 2016										
b. Predic	tores: (Const	ante), Humedad relativ	a 2016, T	emperatura 2016, P	recipitació:	ո 2016				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 30. Análisis de varianza, modelo de regresión lineal nacional, arroz 2016*

Maíz

Modelo de regresión lineal nacional, maíz 2016							
Modelo	R	R cuadrado	R cuadrado ajustado	Error estándar de la estimación			
1	.139ª	0.019	0.019	196.31173			
a Predict	a Predictores: (Constante) Humedad relativa 2016. Temperatura 2016. Precipitación 2016.						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 31. Resumen modelo de regresión lineal nacional, maíz 2016*

	ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	1886908877.912	3	628969625.971	16320.639	.000b				
	Residuo	95529462878.501	2478819	38538.297						
	Total	97416371756.413	2478822							
a. Variable dependiente: Área estimada cultivo maíz 2016										
b. Predic	tores: (Cons	tante), Humedad relativ	va 2016, Te	mperatura 2016, Pr	ecipitación 20	016				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 32. Análisis de varianza, modelo de regresión lineal nacional, maíz 2016*

Arroz

	Modelo de regresión lineal nacional, arroz 2017							
Modelo	elo R R cuadrado R cuadrado ajustado Error estándar de la estimació							
1	.147ª	0.022	0.022	11.79917				
a. Predict	a. Predictores: (Constante), Humedad relativa 2017, Temperatura 2017, Precipitación 2017							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 33. Resumen modelo de regresión lineal nacional, arroz 2017

ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	183362.319	3	61120.773	439.021	.000b				
	Residuo	8256750.609	59307	139.221						
	Total	8440112.928	59310							
a. Variable dependiente: Área estimada cultivo arroz 2017										
b. Predic	tores: (Const	ante), Humedad relativ	a 2017, T	emperatura 2017, P	recipitació	n 2017				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 34. Análisis de varianza, modelo de regresión lineal nacional, arroz 2017

Maíz

Modelo de regresión lineal nacional, maíz 2017							
Modelo	R	R cuadrado	R cuadrado ajustado	Error estándar de la estimación			
1	.153ª	0.023	0.023	446.90026			
a. Predict	a. Predictores: (Constante), Humedad relativa 2017, Precipitación 2017, Temperatura 2017						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 35. Resumen modelo de regresión lineal nacional, maíz 2017*

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	12072869455.120	3	4024289818.373	20149.675	.000b					
	Residuo	506308371753.878	2535093	199719.841							
	Total	518381241208.999	2535096								
a. Variable dependiente: Área estimada cultivo maíz 2017											
b. Predic	tores: (Cons	tante), Humedad relativ	va 2017, Pr	ecipitación 2017, Te	emperatura 20)17					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 36. Análisis de varianza, modelo de regresión lineal nacional, maíz 2017*

Arroz

Modelo de regresión lineal nacional, arroz 2018							
Modelo	R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1	.190a	0.036	0.036	18.03360			
a. Predict	a. Predictores: (Constante), Humedad relativa 2018, Precipitación 2018, Temperatura 2018						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 37. Resumen modelo de regresión lineal nacional, arroz 2018

ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.			
1	Regresión	919818.517	3	306606.172	942.792	.000b			
	Residuo	24490964.605	75308	325.211					
	Total	25410783.122	75311						
a. Variab	a. Variable dependiente: Área estimada cultivo arroz 2018								

ar variable deportation, fred commade cultive arroll 2010

b. Predictores: (Constante), Humedad relativa 2018, Precipitación 2018, Temperatura 2018

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 38. Análisis de varianza, modelo de regresión lineal nacional, arroz 2018

Maíz

Modelo de regresión lineal nacional, maíz 2018							
Modelo	R	R cuadrado	R cuadrado ajustado	Error estándar de la estimación			
1	.027ª	0.001	0.001	26.59983			
a Drodict	a Prodictores: (Constante) Humodad relativa 2018 Procinitación 2018 Temporatura 2018						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 39. Resumen modelo de regresión lineal nacional, maíz 2018*

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	1099136.538	3	366378.846	517.813	.000b					
	Residuo	1487950815.713	2102959	707.551							
	Total	1489049952.252	2102962								
a Mariak	la danandiar	oto: Ároa actimada quit	ivo moí= 20	10							

a. Variable dependiente: Area estimada cultivo maíz 2018

b. Predictores: (Constante), Humedad relativa 2018, Precipitación 2018, Temperatura 2018

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 40. Análisis de varianza, modelo de regresión lineal nacional, maíz 2018

Resumen modelos regresión lineal arroz 2013-2018										
Año	R	R cuadrado	R cuadrado ajustado	Sig						
2013	.248	0.062	0.061	.000						
2014	.231	0.053	0.053	.000						
2015	.208	0.043	0.043	.000						
2016	.117	0.014	0.014	.000						
2017	.147	0.022	0.022	.000						
2018	.190	0.036	0.036	.000						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 41. Resumen de modelos de regresión lineal arroz 2013-2018, nacional

Para el área estimada del cultivo de arroz a nivel nacional, con las variables introducidas al modelo, se han obtenido coeficientes de correlación entre R= 0.248 (año 2013) y R= 0.117 (año 2016), lo que propició en los años ya mencionados, que los coeficientes de determinación fueran R² ajustado=0.061 y R² ajustado= 0.014 respectivamente. Por lo tanto, para el año 2013 puede interpretarse que el modelo puede predecir el 6.1% de la variación del área del cultivo, ante una fluctuación en los predictores. En el caso del año 2016, el modelo únicamente puede predecir un 1.4% del cambio en el área cultivada, respecto a la variabilidad en los parámetros ambientales.

Resumen modelos regresión lineal maíz 2013-2018										
Año	R	R cuadrado	R cuadrado ajustado	Sig						
2013	.140	0.020	0.020	.000						
2014	.128	0.016	0.016	.000						
2015	.100	0.010	0.010	.000						
2016	.139	0.019	0.019	.000						
2017	.153	0.023	0.023	.000						
2018	.027	0.001	0.001	.000						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 42. Resumen de modelos de regresión lineal maíz 2013-2018, nacional

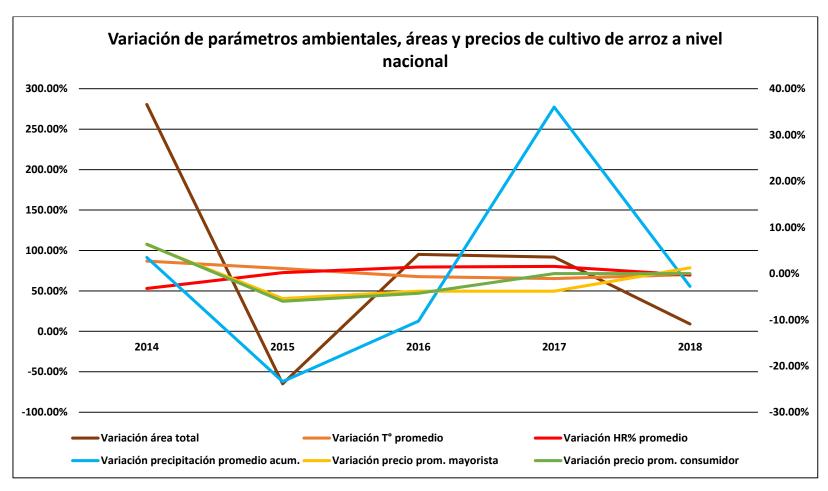
El área estimada del cultivo de maíz del país, obtuvo coeficientes de correlación más bajos que los del cultivo de arroz, lo cual se explica a partir de los coeficientes de correlación bivariada, obtenidos en el apartado correspondiente a dicho análisis. En este caso, el coeficiente de correlación más alto fue obtenido en el año 2013 (R= 0.140), y un coeficiente de determinación R² ajustado= 0.02; lo cual indica que el modelo puede predecir un 2% de la variación en el área estimada del cultivo de maíz, ante la fluctuación de los parámetros ambientales.

3.1.6 Análisis de variación de parámetros ambientales, áreas y precios del maíz y arroz a nivel nacional

Arroz

Año	Área total (ha)	Variación área total	T° promedio estimada	Variación T° promedio	HR% promedio estimada	Variación HR% promedio	Precipitación promedio acum.	Variación precipitación promedio acum.	Precio prom. Mayorista (USD/qq)	Variación precio prom. mayorista	Precio prom. Consumidor (USD/lb)	Variación precio prom. Consumidor
2013	1,285.72		22.25		80.86		1,934.16		\$38.05		\$0.47	
2014	4,892.75	280.55%	22.85	2.70%	78.25	-3.23%	2,001.88	3.50%	\$40.44	6.28%	\$0.50	6.38%
2015	1,714.62	-64.96%	23.10	1.09%	78.40	0.19%	1,533.56	-23.39%	\$38.26	-5.39%	\$0.47	-6.00%
2016	3,344.72	95.07%	22.95	-0.65%	79.51	1.41%	1,375.70	-10.29%	\$36.80	-3.82%	\$0.45	-4.26%
2017	6,413.66	91.75%	22.70	-1.09%	80.76	1.57%	1,871.39	36.03%	\$35.40	-3.80%	\$0.45	0.00%
2018	6,996.89	9.09%	22.65	-0.22%	80.51	-0.31%	1,819.23	-2.79%	\$35.84	1.23%	\$0.45	0.00%

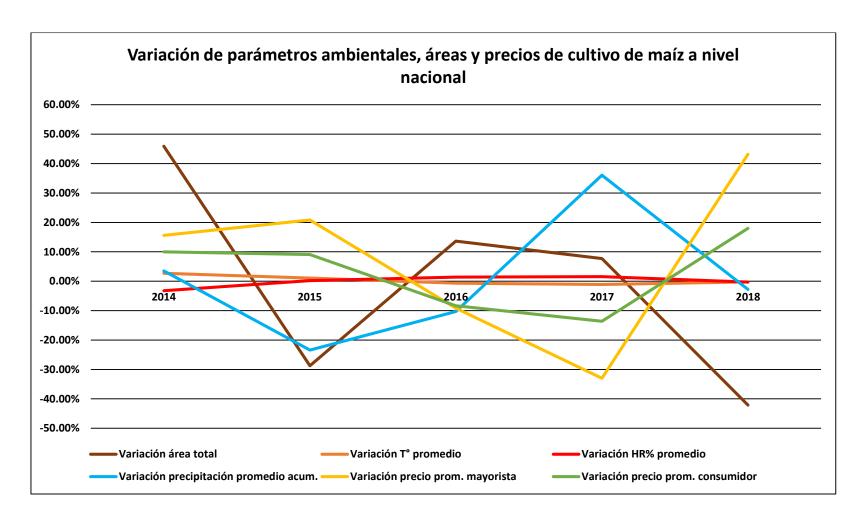
Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA


Tabla 43. Variación de parámetros ambientales, área y precio del arroz a nivel nacional

Maíz

Año	Área total (ha)	Variación área total	T° promedio estimada	Variación T° promedio	HR% promedio estimada	Variación HR% promedio	Precipitación promedio acum.	Variación precipitación promedio acum.	Precio prom. mayorista (USD/qq)	Variación precio prom. mayorista	Precio prom. Consumidor (USD/lb)	Variación precio prom. Consumidor
2013	265,072.90		22.245		80.86		1,934.16		\$14.34		\$0.20	
2014	386,763.88	45.91%	22.845	2.70%	78.25	-3.23%	2,001.88	3.50%	\$16.58	15.62%	\$0.22	10.00%
2015	275,576.03	-28.75%	23.10	1.09%	78.40	0.19%	1,533.56	-23.39%	\$20.03	20.81%	\$0.24	9.09%
2016	313,201.87	13.65%	22.95	-0.65%	79.51	1.41%	1,375.70	-10.29%	\$18.20	-9.14%	\$0.22	-8.33%
2017	337,338.86	7.71%	22.70	-1.09%	80.76	1.57%	1,871.39	36.03%	\$12.20	-32.97%	\$0.19	-13.64%
2018	195,273.57	-42.11%	22.65	-0.22%	80.51	-0.31%	1,819.23	-2.79%	\$17.47	43.20%	\$0.22	17.98%

Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA


Tabla 44. Variación de parámetros ambientales, área y precio del maíz a nivel nacional

Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA

Gráfico 3. Variación porcentual anual de parámetros ambientales, área y precio del arroz a nivel nacional¹²

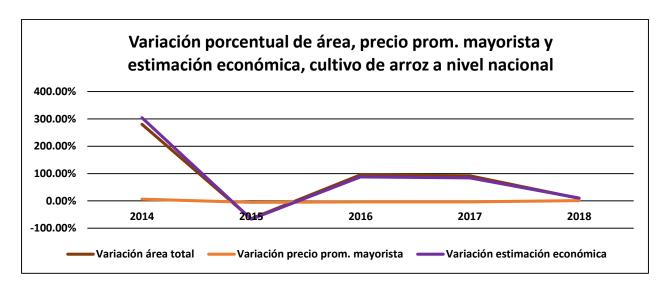
¹² La variación de área total debe ser interpretada con el eje primario (porcentajes del lado izquierdo) del gráfico. La variación de: parámetros ambientales, precio mayorista y precio de consumidor, debe interpretarse con los porcentajes del eje secundario (lado derecho del gráfico).

Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA

Gráfico 4. Variación porcentual anual de parámetros ambientales, área y precio del maíz a nivel nacional

En el caso del cultivo de arroz en todo el país, se observan variaciones sobresalientes en los años 2015 y 2018. En 2015 respecto a 2014: hubo una reducción en el área estimada del cultivo de 64.96%; por otra parte, la temperatura aumentó 1.09%, de igual forma la humedad relativa incrementó 0.19%, y se estimó una reducción del 23.39% en la precipitación. Según el análisis de correlación, lo anterior puede estar vinculado con la relación identificada entre las variables en cuestión. También en 2015 respecto a 2014, hubo una reducción de 5.39% en el precio promedio a nivel mayorista del arroz, e igualmente un decremento de 6.00% en el precio promedio a nivel de consumidor; lo cual no tiene una explicación a partir de las variables incluidas en esta investigación. En el año 2018 respecto a 2017, se identificó un aumento de 9.09% en el área estimada de arroz, además de una disminución de 0.22% en la temperatura, una variación negativa de 0.31% en la humedad relativa y una reducción de 2.79% en la precipitación; también se encontraron coeficientes de correlación bajos entre el área del cultivo y los parámetros ambientales que oscilaron entre R= 0.123 y R= 0.169, lo anterior posiblemente tiene que ver con las variaciones ya mencionadas.

Para el cultivo del maíz a nivel nacional, se identificaron variaciones importantes en los años 2015, 2017 y 2018. En 2015 comparado con 2014, el área estimada de este cultivo disminuyó 64.96%, además de las variaciones de los parámetros ambientales ya mencionadas en el cultivo de arroz; junto a un alza de 20.81% en el precio a nivel mayorista y un aumento de 9.09% en el precio a nivel de consumidor. En este caso, las variaciones mencionadas se corresponden entre ellas, ya que ante una disminución en el área cultivada por decremento en la precipitación ha correspondido una fluctuación positiva en los precios tanto para mayoristas como para consumidores. También se debe tener en cuenta que la fuente de los datos es distinta, pues las áreas estimadas del cultivo que se han utilizado en esta investigación fueron obtenidas por Rivas et al. (2020), mediante el procesamiento de imágenes satelitales, los registros de parámetros ambientales de las estaciones meteorológicas utilizados para la interpolación fueron proporcionados por el MARN y los precios han sido retomados de los anuarios de la DGEA. En el año 2018 respecto a 2017, se identificó otra reducción en el área del cultivo, acompañada de las variaciones de precipitación, temperatura y humedad relativa comentadas en el cultivo de arroz; además de la correspondiente alza de 43.20% en el precio a mayoristas, y un aumento de 17.98% en el precio para consumidores finales.

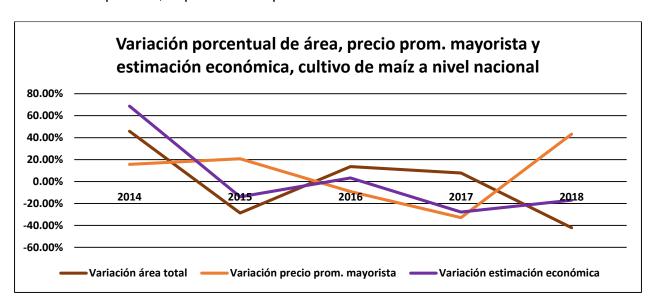

3.1.7 Estimación económica de la producción nacional de arroz y maíz

Arroz

Año	Área total (ha)	Rendimiento	Unidad área	Producción estimada (qq)	Precio prom. Mayorista (USD/qq)	Estimación económica a precio prom. mayorista
2013	1,285.72			329,144.32	\$38.05	\$12,523,941.38
2014	4,892.75			1,252,544.00	\$40.44	\$50,652,879.36
2015	1,714.62	256	qq/ha	438,942.72	\$38.26	\$16,793,948.47
2016	3,344.72			856,248.32	\$36.80	\$31,509,938.18
2017	6,413.66			1,641,896.96	\$35.40	\$58,123,152.38
2018	6,996.89			1,791,204.84	\$35.84	\$64,196,781.56

Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Tabla 45. Estimación económica de la producción nacional de arroz

A partir de las variaciones identificadas en el área estimada del cultivo de arroz, los parámetros ambientales y los precios, se obtuvo la estimación económica, que para el año 2015 fue de \$16,793,948.47. En 2018 respecto a 2015, la precipitación incrementó un 18.63%, lo cual concuerda con el aumento del área estimada del cultivo para 2018, por lo cual la estimación económica de la producción fue de \$64,196,781.56 para ese año. Es claro que la variación en los precios no ocurre únicamente por la disponibilidad del arroz; ya que hay factores tales como la importación, la especulación, entre otros aspectos que también influyen en los precios.


Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Gráfico 5. Variación porcentual anual de área, precio prom. mayorista y estimación económica de la producción nacional de arroz

Maíz

Año	Área total (ha)	Rendimiento	Unidad área	Producción estimada (qq)	Precio prom. Mayorista (USD/qq)	Estimación económica a precio prom. Mayorista
2013	265,072.90			30,655,680.89	\$14.34	\$439,602,463.89
2014	386,763.88			44,729,242.72	\$16.58	\$741,610,844.33
2015	275,576.03	115.65	qq/ha	31,870,367.87	\$20.03	\$638,363,468.43
2016	313,201.87			36,221,796.27	\$18.20	\$659,236,692.03
2017	337,338.86			39,013,239.16	\$12.20	\$475,961,517.74
2018	195,273.57			22,583,388.37	\$17.47	\$394,531,794.83

Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Tabla 46. Estimación económica de la producción nacional de maíz

En el caso del cultivo del maíz, las variaciones negativas en el área estimada para los años 2015 y 2018, se corresponden con la variación observada en los parámetros ambientales y al mismo tiempo, concuerdan con el alza en el precio a nivel mayorista para esos dos años; pues al obtener una cosecha menor que en otros años, el precio tiende al alza. En 2015, a pesar de haber estimado una de las producciones más bajas de maíz, se tuvo una estimación económica de \$638,363,468.43; lo anterior debido al aumento en el precio. En 2018 se identificó el área estimada más baja del periodo de estudio, lo que también conllevó a estimar una producción baja; con el segundo precio más alto del periodo, superado solo por el del año 2015.

Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Gráfico 6. Variación porcentual anual de área, precio prom. mayorista y estimación económica de la producción nacional de maíz

3.5 Zona Oriental

3.5.1 Mapas de precipitación

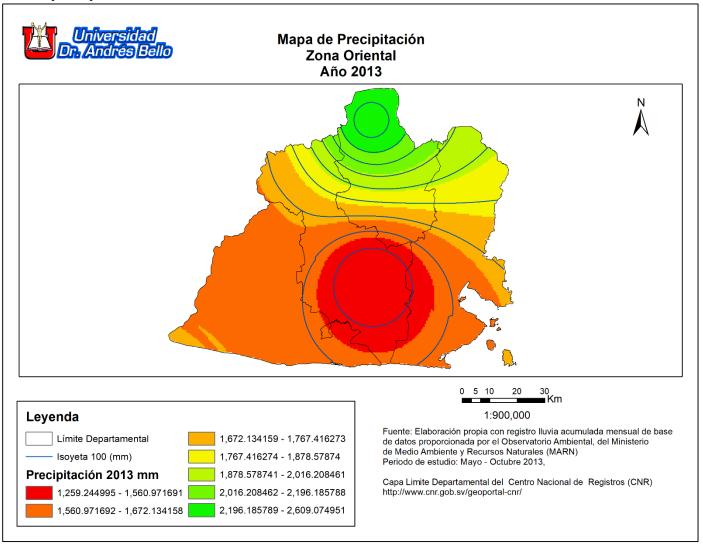


Figura 46. Mapa de precipitación, zona oriental, 2013

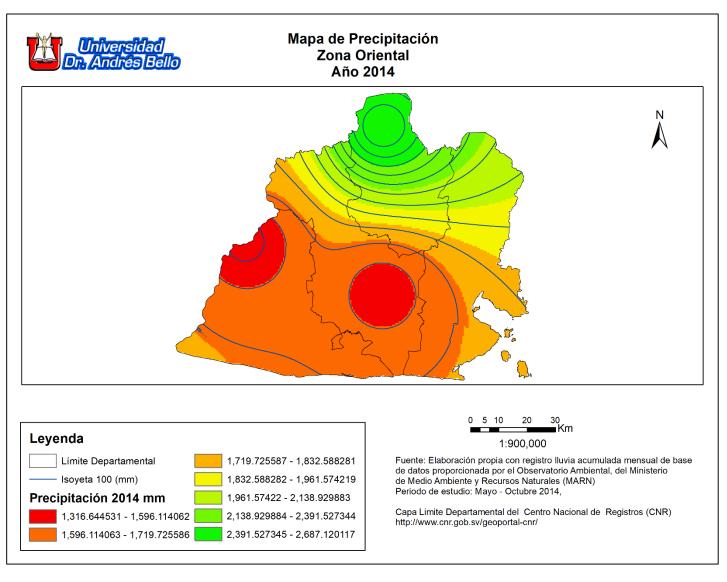


Figura 47. Mapa de precipitación, zona oriental, 2014

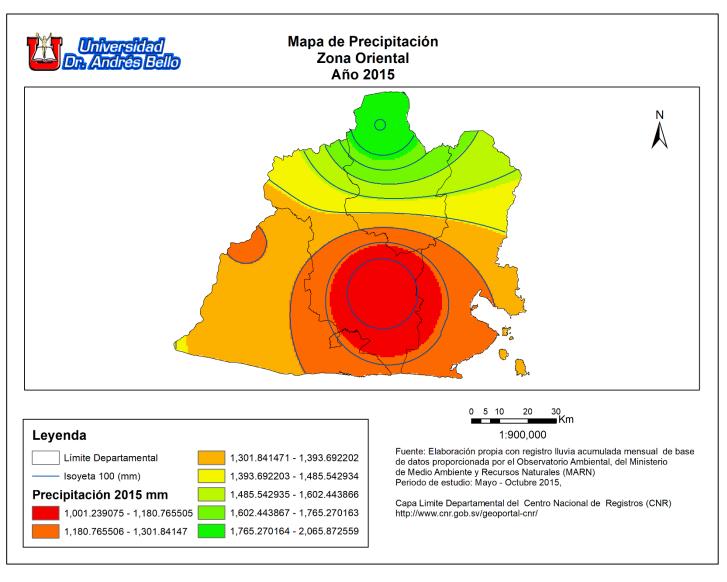


Figura 48. Mapa de precipitación, zona oriental, 2015

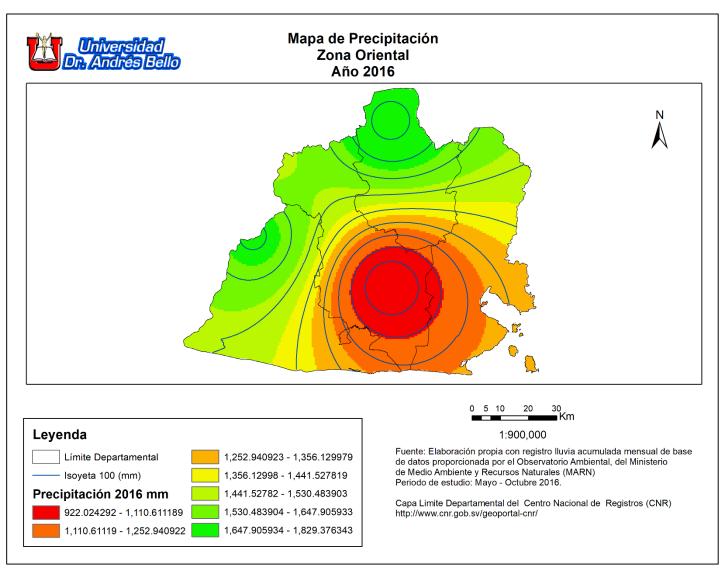


Figura 49. Mapa de precipitación, zona oriental, 2016

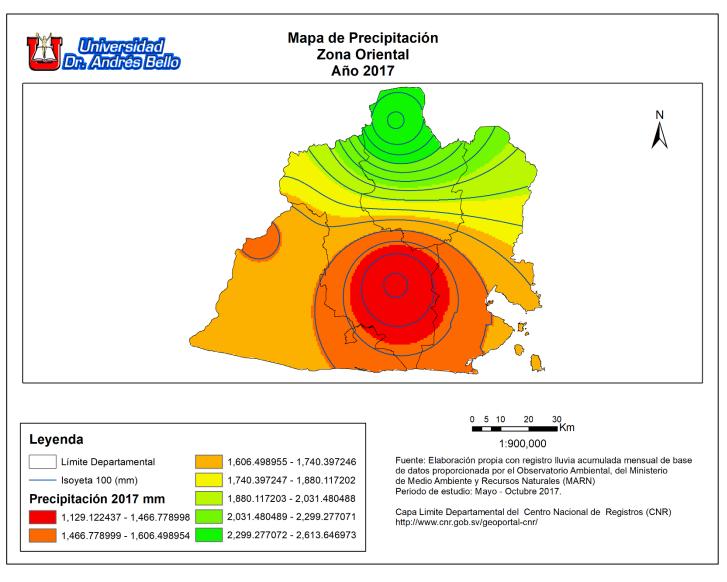


Figura 50. Mapa de precipitación, zona oriental, 2017

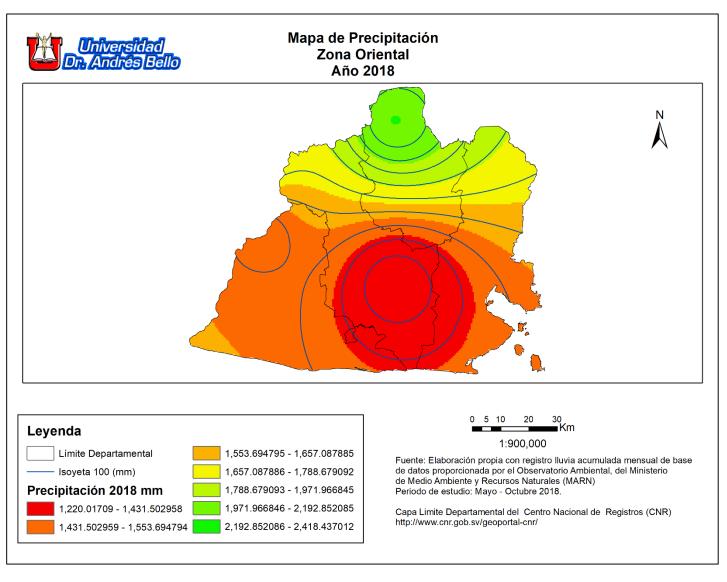


Figura 51. Mapa de precipitación, zona oriental, 2018

3.5.2 Mapas de temperatura

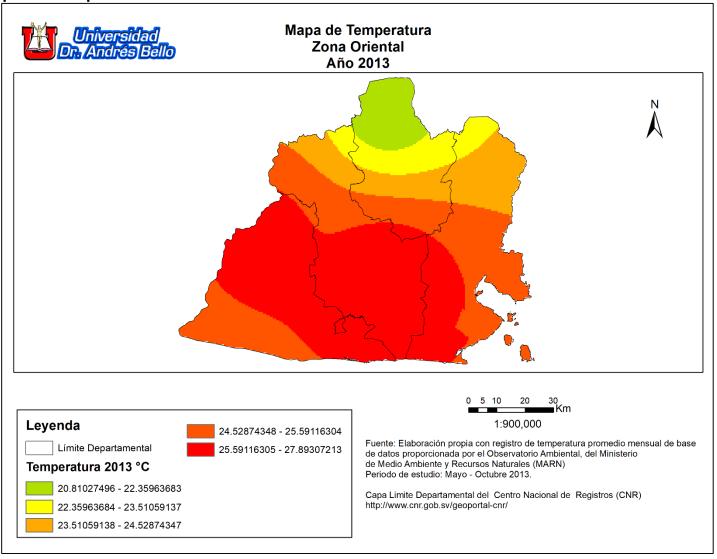


Figura 52. Mapa de temperatura, zona oriental, 2013

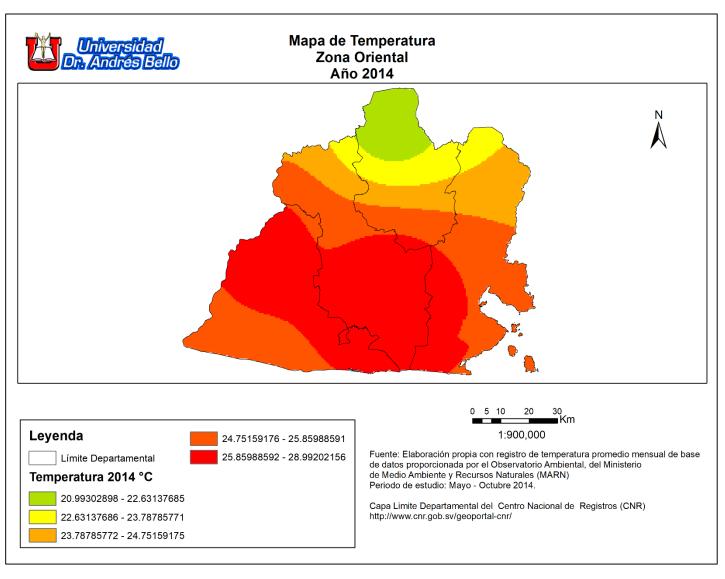


Figura 53. Mapa de temperatura, zona oriental, 2014

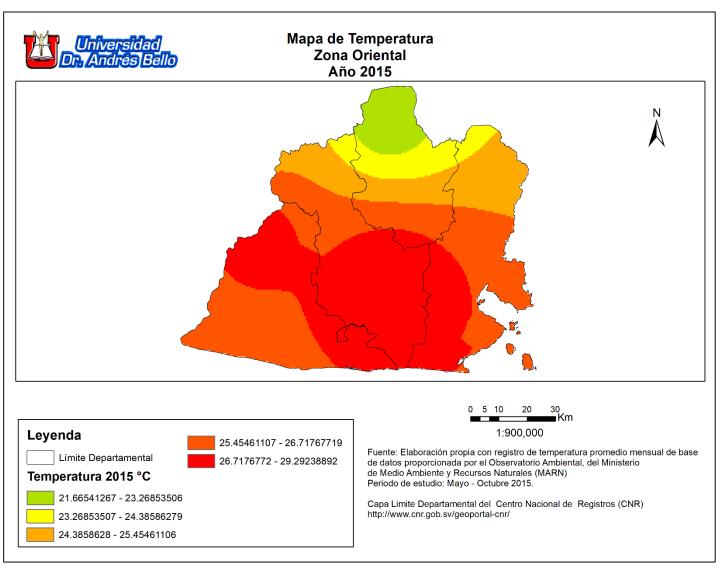


Figura 54. Mapa de temperatura, zona oriental, 2015

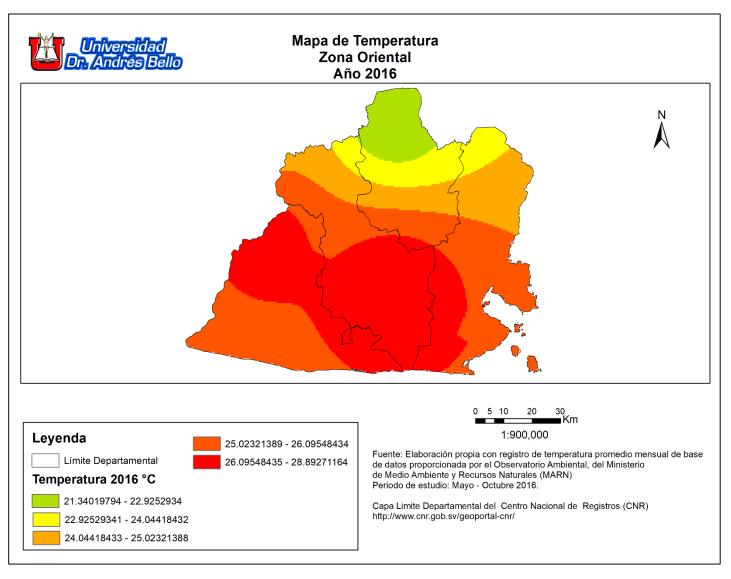


Figura 55. Mapa de temperatura, zona oriental, 2016

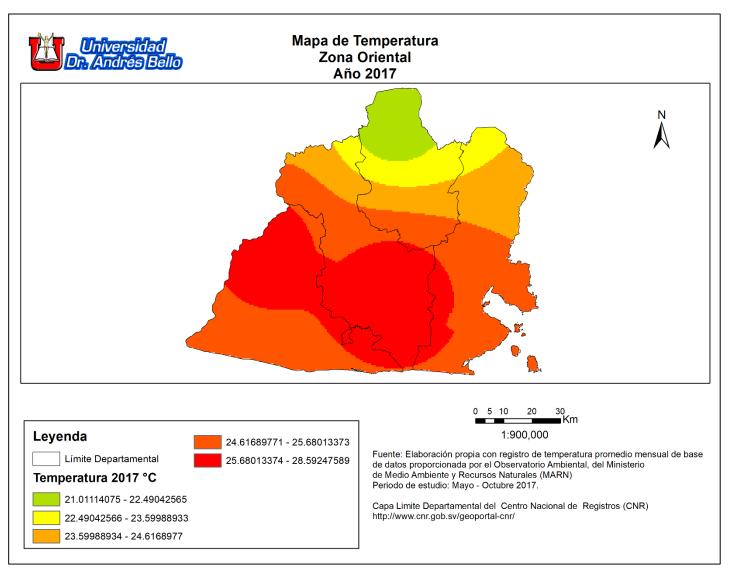


Figura 56. Mapa de temperatura, zona oriental, 2017

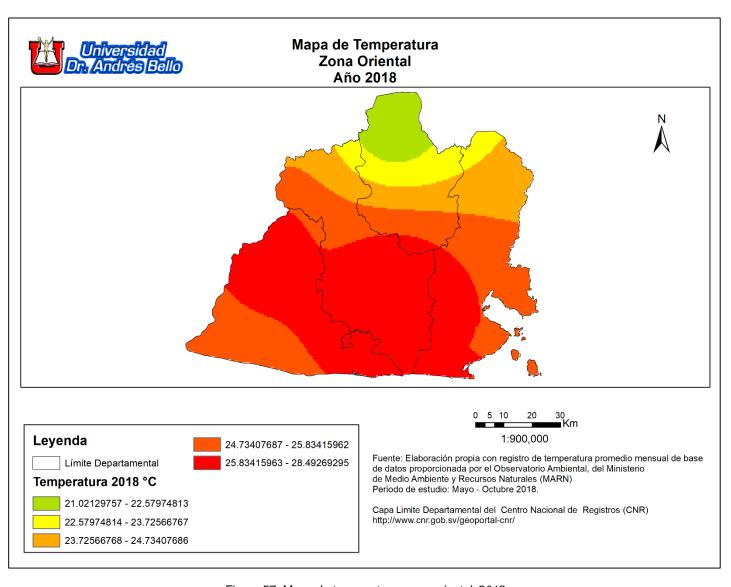


Figura 57. Mapa de temperatura, zona oriental, 2018

3.5.3 Mapas de humedad relativa

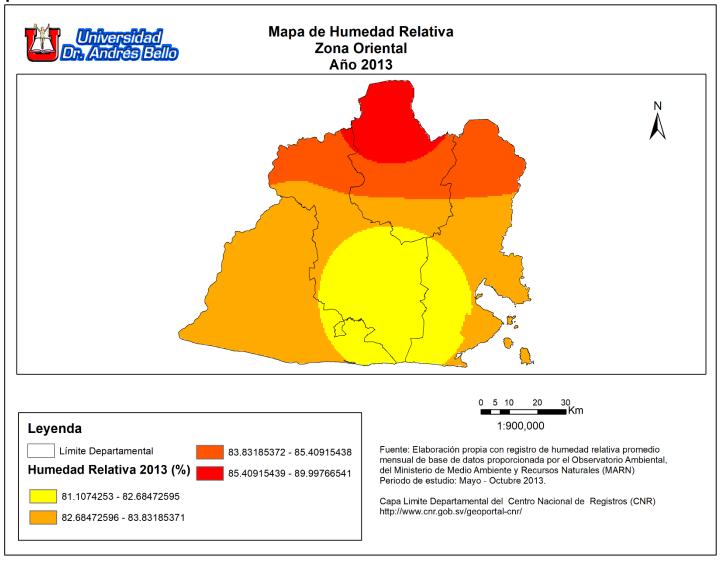


Figura 58. Mapa de humedad relativa, zona oriental, 2013

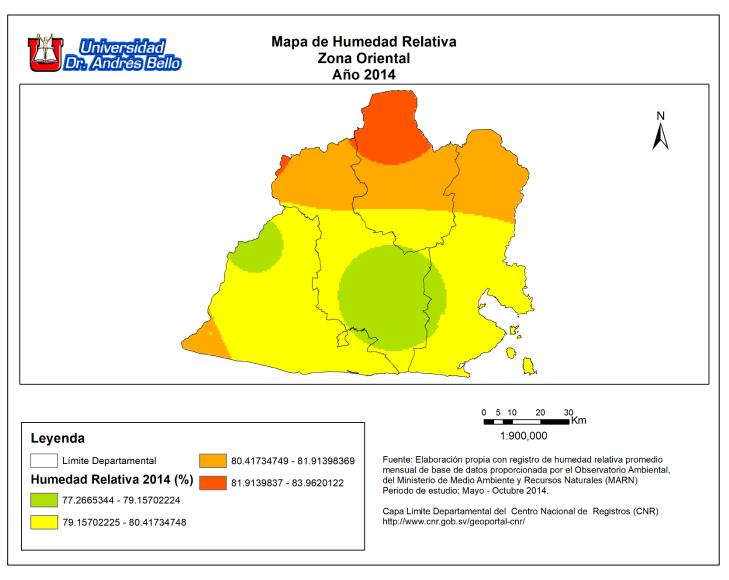


Figura 59. Mapa de humedad relativa, zona oriental, 2014

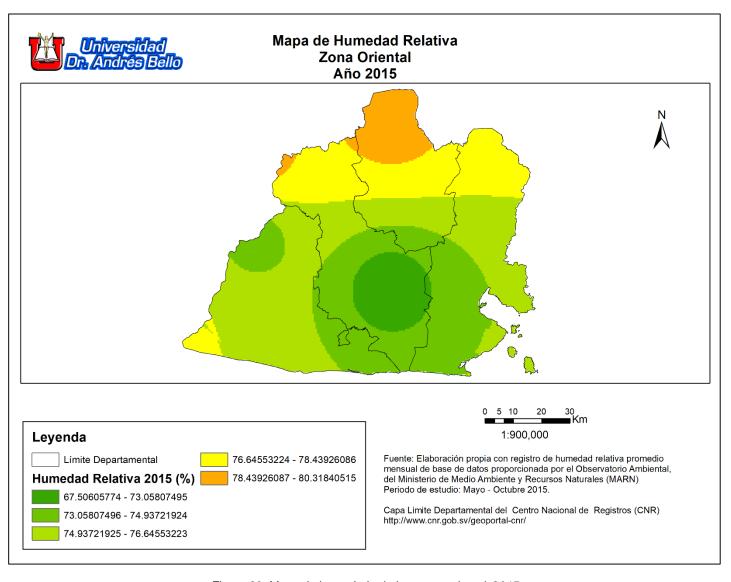


Figura 60. Mapa de humedad relativa, zona oriental, 2015

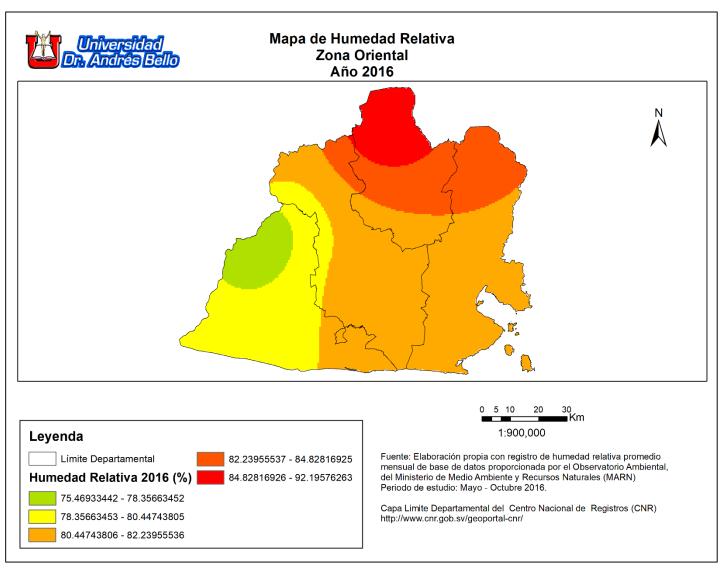


Figura 61. Mapa de humedad relativa, zona oriental, 2016

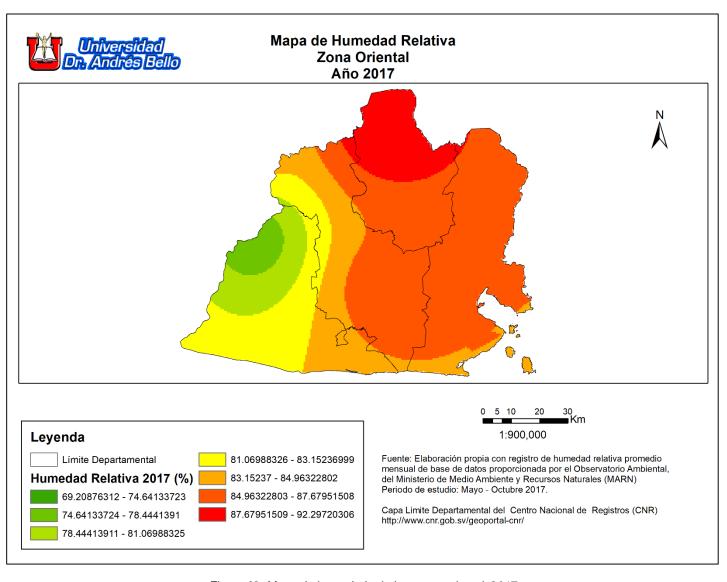


Figura 62. Mapa de humedad relativa, zona oriental, 2017

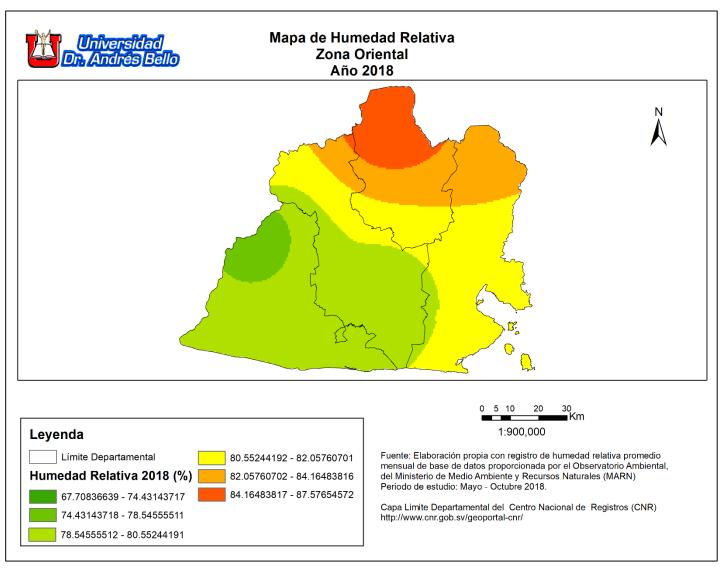


Figura 63. Mapa de humedad relativa, zona oriental, 2018

3.5.4 Análisis de correlación, zona oriental

	Correlació	n bivariada arroz	2013, zona ori	ental	
		Área estimada cultivo arroz, zona oriental 2013	Precipitación 2013	Temperatura 2013	Humedad relativa 2013
Área estimada cultivo arroz, zona	Correlación de Pearson	1	205 [*]	0.077	.208*
oriental 2013	Sig. (bilateral)		0.031	0.420	0.029
	N	111	111	111	111
Precipitación 2013	Correlación de Pearson	205 [*]	1	584**	885**
	Sig. (bilateral)	0.031		0.000	0.000
	N	111	111	111	111
Temperatura 2013	Correlación de Pearson	0.077	584**	1	0.147
	Sig. (bilateral)	0.420	0.000		0.122
	N	111	111	111	111
Humedad relativa 2013	Correlación de Pearson	.208 [*]	885**	0.147	1
	Sig. (bilateral)	0.029	0.000	0.122	
	N	111	111	111	111
*. La correlación es si	gnificativa en e	el nivel 0,05 (bilateral)			
**. La correlación es s					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 47. Correlación bivariada arroz 2013, zona oriental

	Correlació	ón bivariada maíz 2	2013, zona orie	ental	
		Área estimada cultivo maíz, zona oriental 2013	Precipitación 2013	Temperatura 2013	Humedad relativa 2013
Área estimada cultivo maíz, zona	Correlación de Pearson	1	070**	.072**	063**
oriental 2013	Sig. (bilateral)		0.000	0.000	0.000
	N	1006794	1006794	1006794	1006794
Precipitación 2013	Correlación de Pearson	070**	1	754**	.527**
	Sig. (bilateral)	0.000		0.000	0.000
	N	1006794	1006794	1006794	1006794
Temperatura 2013	Correlación de Pearson	.072**	754 ^{**}	1	432**
	Sig. (bilateral)	0.000	0.000		0.000
	N	1006794	1006794	1006794	1006794
Humedad relativa 2013	Correlación de Pearson	063**	.527**	432**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	1006794	1006794	1006794	1006794
**. La correlación es s	significativa en	el nivel 0,01 (bilateral).		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

	Correlació	ón bivariada arroz	2014, zona ori	ental	
		Área estimada cultivo arroz, zona oriental 2014	Precipitación 2014	Temperatura 2014	Humedad relativa 2014
Área estimada cultivo arroz, zona	Correlación de Pearson	1	0.070	-0.038	-0.036
oriental 2014	Sig. (bilateral)		0.055	0.295	0.330
	N	753	753	753	753
Precipitación 2014	Correlación de Pearson	0.070	1	903**	.641**
	Sig. (bilateral)	0.055		0.000	0.000
	N	753	753	753	753
Temperatura 2014	Correlación de Pearson	-0.038	903**	1	574**
	Sig. (bilateral)	0.295	0.000		0.000
	N	753	753	753	753
Humedad relativa 2014	Correlación de Pearson	-0.036	.641**	574**	1
	Sig. (bilateral)	0.330	0.000	0.000	
	N	753	753	753	753
**. La correlación es s	ignificativa en	el nivel 0,01 (bilateral).		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 49. Correlación bivariada arroz 2014, zona oriental

	Correlación bivariada maíz 2014, zona oriental							
		Área estimada cultivo maíz, zona oriental 2014	Precipitación 2014	Temperatura 2014	Humedad relativa 2014			
Área estimada cultivo maíz, zona	Correlación de Pearson	1	.111**	033**	.037**			
oriental 2014	Sig. (bilateral)		0.000	0.000	0.000			
	N	1228634	1228634	1228634	1228634			
Precipitación 2014	Correlación de Pearson	.111**	1	828**	.491**			
	Sig. (bilateral)	0.000		0.000	0.000			
	N	1228634	1228634	1228634	1228634			
Temperatura 2014	Correlación de Pearson	033**	828**	1	635 ^{**}			
	Sig. (bilateral)	0.000	0.000		0.000			
	N	1228634	1228634	1228634	1228634			
Humedad relativa 2014	Correlación de Pearson	.037**	.491**	635**	1			
	Sig. (bilateral)	0.000	0.000	0.000				
	N	1228634	1228634	1228634	1228634			
**. La correlación es s	significativa en	el nivel 0,01 (bilateral).					
the state of the s								

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 50. Correlación bivariada maíz 2014, zona oriental*

	Correlació	ón bivariada arroz	2015, zona ori	ental	
		Área estimada cultivo arroz, zona oriental 2015	Precipitación 2015	Temperatura 2015	Humedad relativa 2015
Área estimada cultivo arroz, zona	Correlación de Pearson	1	-0.185	-0.124	0.259
oriental 2015	Sig. (bilateral)		0.198	0.392	0.069
	N	50	50	50	50
Precipitación 2015	Correlación de Pearson	-0.185	1	-0.267	865**
	Sig. (bilateral)	0.198		0.061	0.000
	N	50	50	50	50
Temperatura 2015	Correlación de Pearson	-0.124	-0.267	1	-0.239
	Sig. (bilateral)	0.392	0.061		0.095
	N	50	50	50	50
Humedad relativa 2015	Correlación de Pearson	0.259	865**	-0.239	1
	Sig. (bilateral)	0.069	0.000	0.095	
	N	50	50	50	50
**. La correlación es s	significativa en	el nivel 0,01 (bilateral).		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 51. Correlación bivariada arroz 2015, zona oriental

Correlación bivariada maíz 2015, zona oriental							
		Área estimada cultivo maíz, zona oriental 2015	Precipitación 2015	Temperatura 2015	Humedad relativa 2015		
Área estimada cultivo maíz, zona	Correlación de Pearson	1	038**	.021**	.105**		
oriental 2015	Sig. (bilateral)		0.000	0.000	0.000		
	N	343535	343535	343535	343535		
Precipitación 2015	Correlación de Pearson	038**	1	742**	.503**		
	Sig. (bilateral)	0.000		0.000	0.000		
	N	343535	343535	343535	343535		
Temperatura 2015	Correlación de Pearson	.021**	742**	1	854**		
	Sig. (bilateral)	0.000	0.000		0.000		
	N	343535	343535	343535	343535		
Humedad relativa 2015	Correlación de Pearson	.105**	.503**	854 ^{**}	1		
	Sig. (bilateral)	0.000	0.000	0.000			
	N	343535	343535	343535	343535		
**. La correlación es s	significativa en	el nivel 0,01 (bilateral					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 52. Correlación bivariada maíz 2015, zona oriental

	Correlació	n bivariada arroz	2016, zona ori	ental	
		Área estimada cultivo arroz, zona oriental 2016	Precipitación 2016	Temperatura 2016	Humedad relativa 2016
Área estimada cultivo arroz, zona	Correlación de Pearson	1	0.035	0.025	339**
oriental 2016	Sig. (bilateral)		0.132	0.277	0.000
	N	1873	1873	1873	1873
Precipitación 2016	Correlación de Pearson	0.035	1	.191**	445**
	Sig. (bilateral)	0.132		0.000	0.000
	N	1873	1873	1873	1873
Temperatura 2016	Correlación de Pearson	0.025	.191**	1	240**
	Sig. (bilateral)	0.277	0.000		0.000
	N	1873	1873	1873	1873
Humedad relativa 2016	Correlación de Pearson	339**	445**	240**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	N	1873	1873	1873	1873
**. La correlación es s	ignificativa en	el nivel 0,01 (bilatera	l).		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 53. Correlación bivariada arroz 2016, zona oriental*

	Correlación bivariada maíz 2016, zona oriental							
		Área estimada cultivo maíz, zona oriental 2016	Precipitación 2016	Temperatura 2016	Humedad relativa 2016			
Área estimada cultivo maíz, zona	Correlación de Pearson	1	.071**	.006**	.073**			
oriental 2016	Sig. (bilateral)		0.000	0.000	0.000			
	N	1125558	1125558	1125558	1125558			
Precipitación 2016	Correlación de Pearson	.071**	1	611 ^{**}	486**			
	Sig. (bilateral)	0.000		0.000	0.000			
	N	1125558	1125558	1125558	1125558			
Temperatura 2016	Correlación de Pearson	.006**	611**	1	040**			
	Sig. (bilateral)	0.000	0.000		0.000			
	N	1125558	1125558	1125558	1125558			
Humedad relativa 2016	Correlación de Pearson	.073**	486**	040**	1			
	Sig. (bilateral)	0.000	0.000	0.000				
	N	1125558	1125558	1125558	1125558			
**. La correlación es s	ignificativa en	el nivel 0,01 (bilatera).					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 54. Correlación bivariada maíz 2016, zona oriental

	Correlació	n bivariada arroz	2017, zona ori	ental	
		Área estimada cultivo arroz, zona oriental 2017	Precipitación 2017	Temperatura 2017	Humedad relativa 2017
Área estimada cultivo arroz, zona	Correlación de Pearson	1	515 ^{**}	443**	.511**
oriental 2017	Sig. (bilateral)		0.000	0.000	0.000
	N	1885	1885	1885	1885
Precipitación 2017	Correlación de Pearson	515 ^{**}	1	.363**	778**
	Sig. (bilateral)	0.000		0.000	0.000
	N	1885	1885	1885	1885
Temperatura 2017	Correlación de Pearson	443**	.363**	1	515 ^{**}
	Sig. (bilateral)	0.000	0.000		0.000
	N	1885	1885	1885	1885
Humedad relativa 2017	Correlación de Pearson	.511**	778**	515 ^{**}	1
	Sig. (bilateral)	0.000	0.000	0.000	
	Ň	1885	1885	1885	1885
**. La correlación es s	ignificativa en	el nivel 0,01 (bilatera	l).		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 55. Correlación bivariada arroz 2017, zona oriental*

	Correlación bivariada maíz 2017, zona oriental							
		Área estimada cultivo maíz, zona oriental 2017	Precipitación 2017	Temperatura 2017	Humedad relativa 2017			
Área estimada cultivo maíz, zona	Correlación de Pearson	1	.236**	010**	.055**			
oriental 2017	Sig. (bilateral)		0.000	0.000	0.000			
	N	1113987	1113987	1113987	1113987			
Precipitación 2017	Correlación de Pearson	.236**	1	676**	191**			
	Sig. (bilateral)	0.000		0.000	0.000			
	N	1113987	1113987	1113987	1113987			
Temperatura 2017	Correlación de Pearson	010**	676**	1	188**			
	Sig. (bilateral)	0.000	0.000		0.000			
	N	1113987	1113987	1113987	1113987			
Humedad relativa 2017	Correlación de Pearson	.055**	191**	188**	1			
	Sig. (bilateral)	0.000	0.000	0.000				
	N	1113987	1113987	1113987	1113987			
**. La correlación es s	ignificativa en	el nivel 0,01 (bilateral).					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 56. Correlación bivariada maíz 2017, zona oriental*

	Correlació	ón bivariada arroz	2018, zona ori	ental	
		Área estimada cultivo arroz, zona oriental 2018	Precipitación 2018	Temperatura 2018	Humedad relativa 2018
Área estimada cultivo arroz, zona	Correlación de Pearson	1	.289**	332**	.260**
oriental 2018	Sig. (bilateral)		0.000	0.000	0.000
	N	2591	2591	2591	2591
Precipitación 2018	Correlación de Pearson	.289**	1	312**	.798**
	Sig. (bilateral)	0.000		0.000	0.000
	N	2591	2591	2591	2591
Temperatura 2018	Correlación de Pearson	332**	312**	1	335**
	Sig. (bilateral)	0.000	0.000		0.000
	N	2591	2591	2591	2591
Humedad relativa 2018	Correlación de Pearson	.260**	.798**	335**	1
	Sig. (bilateral)	0.000	0.000	0.000	
	Ň	2591	2591	2591	2591
**. La correlación es s	ignificativa en	el nivel 0,01 (bilateral).		

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 57. Correlación bivariada arroz 2018, zona oriental

	Correlación bivariada maíz 2018, zona oriental							
		Área estimada cultivo maíz, zona oriental 2018	Precipitación 2018	Temperatura 2018	Humedad relativa 2018			
Área estimada cultivo maíz, zona	Correlación de Pearson	1	005**	-0.001	.010**			
oriental 2018	Sig. (bilateral)		0.000	0.483	0.000			
	N	766630	766630	766630	766630			
Precipitación 2018	Correlación de Pearson	005**	1	505**	.537**			
	Sig. (bilateral)	0.000		0.000	0.000			
	N	766630	766630	766630	766630			
Temperatura 2018	Correlación de Pearson	-0.001	505 ^{**}	1	665**			
	Sig. (bilateral)	0.483	0.000		0.000			
	N	766630	766630	766630	766630			
Humedad relativa 2018	Correlación de Pearson	.010**	.537**	665 ^{**}	1			
	Sig. (bilateral)	0.000	0.000	0.000				
	N	766630	766630	766630	766630			
**. La correlación es s	ignificativa en	el nivel 0,01 (bilatera).					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 58. Correlación bivariada maíz 2018, zona oriental*

Según las bases de datos de arroz procesadas, este cultivo ha obtenido la mayor cantidad de coeficientes de correlación nada significativos, específicamente de 2013 a 2016, posiblemente por la cantidad de registros de esas bases de datos, teniendo en cuenta que en la zona oriental es donde menos se produce arroz. En el año 2013 las correlaciones antes mencionadas se identificaron entre el área estimada de arroz y la temperatura, además de la relación entre temperatura y humedad relativa. Para el 2014, las correlaciones (bivariadas) nada significativas, se observaron entre el área estimada del cultivo y los tres parámetros ambientales. La situación de 2014, también se registró en el año 2015, y en 2016 entre el área de cultivo con temperatura y precipitación.

Posteriormente en el año 2017, se registraron coeficientes de correlación bastante significativos (nivel 0.01) entre el área estimada de arroz con: precipitación (R= -0.515), temperatura (R= -0.443) y humedad relativa (R= 0.511), lo cual también fue registrado en el año 2018, con coeficientes un poco más bajos R= 0.289, R= -0.332 y R= 0.260, respectivamente.

En el caso del cultivo del maíz, aunque se obtuvieron algunos coeficientes de correlación bajo entre el área de cultivo y los parámetros ambientales, todos (menos la correlación entre área estimada de cultivo y temperatura del año 2018) presentaron significatividad en el nivel 0.01.

Para el 2013, se registraron dos correlaciones de tipo inversa entre el área estimada de maíz con precipitación (R= -0.070) y con humedad relativa (R= -0.063), y una correlación de tipo directa entre dicha área y la temperatura (R= 0.072). Por otra parte, en el año 2018 algunos de los coeficientes más bajos entre el área de maíz con la precipitación (R= -0.005) y con humedad relativa (R= 0.010).

Si bien es cierto, los coeficientes de correlación obtenidos en la mayoría de los casos son bajos; es importante evidenciar que dichos coeficientes han sido significativos en nivel 0.01. También hay que tener en cuenta que la información utilizada proviene de tres fuentes distintas: las áreas estimadas de cultivos son producto de la investigación realizada por Rivas et al. (2020); la interpolación de datos para obtener los mapas de los parámetros ambientales fue posible gracias a la base de datos proporcionada por el MARN, y los precios fueron tomados de los anuarios de la DGEA.

3.5.5 Modelos de regresión lineal, zona oriental

2013

Arroz

Modelo de regresión lineal arroz 2013, zona oriental								
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación							
1	.213ª	0.045	0.019	0.07891				
a. Predic	a. Predictores: (Constante), Humedad relativa 2013, Temperatura 2013, Precipitación 2013							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 59. Resumen modelo de regresión lineal arroz 2013, zona oriental

ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	0.032	3	0.011	1.694	.173 ^b				
	Residuo	0.666	107	0.006						
	Total	0.698	110							
a. Variabl	e dependiente	e: Área estimada cultivo a	arroz, z	zona oriental 2013						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 60. Análisis de varianza, modelo de regresión lineal arroz 2013, zona oriental

Maíz

b. Predictores: (Constante), Humedad relativa 2013, Temperatura 2013, Precipitación 2013

	Modelo de regresión lineal maíz 2013, zona oriental							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimació							
1	.081a	0.007	0.007	224.07732				
a. Predic	a. Predictores: (Constante), Humedad relativa 2013, Temperatura 2013, Precipitación 2013							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 61. Resumen modelo de regresión lineal maíz 2013, zona oriental*

	ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	333851755.887	3	111283918.629	2216.341	.000b				
	Residuo	50551576324.104	1006790	50210.646						
	Total	50885428079.991	1006793							

a. Variable dependiente: Área estimada cultivo maíz, zona oriental 2013

b. Predictores: (Constante), Humedad relativa 2013, Temperatura 2013, Precipitación 2013

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 62. Análisis de varianza, modelo de regresión lineal maíz 2013, zona oriental

Modelo de regresión lineal arroz 2014, zona oriental							
Modelo R cuadrado R cuadrado ajustado Error estándar de la estimación							
1	.139ª	0.019	0.015	0.39714			
a. Predic	a. Predictores: (Constante), Humedad relativa 2014, Temperatura 2014, Precipitación 2014						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 63. Resumen modelo de regresión lineal arroz 2014, zona oriental*

ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.			
1	Regresión	2.337	3	0.779	4.940	.002b			
	Residuo	118.133	749	0.158					
	Total	120.471	752						
a. Variable dependiente: Área estimada cultivo arroz, zona oriental 2014									
b. Predict	tores: (Consta	nte), Humedad relativa 2	2014, T	emperatura 2014, Pre	ecipitació	n 2014			

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 64. Análisis de varianza, modelo de regresión lineal arroz 2014, zona oriental*

Maíz

Modelo de regresión lineal maíz 2014, zona oriental							
Modelo	odelo R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1	.156ª	0.024	0.024	207.72952			
a. Predict	a. Predictores: (Constante), Humedad relativa 2014, Precipitación 2014, Temperatura 2014						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 65. Resumen modelo de regresión lineal maíz 2014, zona oriental

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	1327908384.265	3	442636128.088	10257.710	.000b					
	Residuo	53017295075.138	1228630	43151.555							
	Total	54345203459.404	1228633								
a. Variable dependiente: Área estimada cultivo maíz, zona oriental 2014											
b Predic	tores: (Cons	tante) Humedad relativ	va 2014 Pr	ecipitación 2014. Te	emperatura 20)14					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 66. Análisis de varianza, modelo de regresión lineal maíz 2014, zona oriental*

Modelo de regresión lineal arroz 2015, zona oriental								
Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación								
1	.275ª	0.076	0.015	0.21777				
a. Predic	a. Predictores: (Constante), Humedad relativa 2015, Temperatura 2015, Precipitación 2015							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 67. Resumen modelo de regresión lineal arroz 2015, zona oriental

ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.			
1	Regresión	0.178	3	0.059	1.252	.302b			
	Residuo	2.181	46	0.047					
	Total	2.360	49						
a. Variable dependiente: Área estimada cultivo arroz, zona oriental 2015									
b. Predict	tores: (Constar	nte), Humedad relativa 20	015, T	emperatura 2015, Pro	ecipitació	n 2015			

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 68. Análisis de varianza, modelo de regresión lineal arroz 2015, zona oriental

Maíz

Modelo de regresión lineal maíz 2015, zona oriental							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación						
1	.243ª	0.059	0.059	74.52707			
a. Predict	a. Predictores: (Constante), Humedad relativa 2015, Precipitación 2015, Temperatura 2015						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 69. Resumen modelo de regresión lineal maíz 2015, zona oriental*

	ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	119716072.074	3	39905357.358	7184.608	.000b				
	Residuo	1908068849.063	343531	5554.284						
	Total	2027784921.136	343534							
a. Variable dependiente: Área estimada cultivo maíz, zona oriental 2015										
b. Predic	tores: (Cons	tante), Humedad relativ	va 2015, F	recipitación 2015, T	emperatura	2015				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 70. Análisis de varianza, modelo de regresión lineal maíz 2015, zona oriental

	Modelo de regresión lineal arroz 2016, zona oriental								
Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación									
1 .365 ^a 0.133 0.132 6.3									
a. Predict	a. Predictores: (Constante), Humedad relativa 2016, Temperatura 2016, Precipitación 2016								

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 71. Resumen modelo de regresión lineal arroz 2016, zona oriental

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	11436.816	3	3812.272	95.927	.000b					
	Residuo	74276.314	1869	39.741							
	Total	85713.130	1872								
a. Variable dependiente: Área estimada cultivo arroz, zona oriental 2016											
b. Predic	tores: (Consta	ante), Humedad relativa	2016, T	emperatura 2016, Pr	ecipitació	n 2016					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 72. Análisis de varianza, modelo de regresión lineal arroz 2016, zona oriental

Maíz

	Modelo de regresión lineal maíz 2016, zona oriental							
Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación								
1 .201 ^a 0.040 0.040 273.05059								
a. Predic	a. Predictores: (Constante), Humedad relativa 2016, Temperatura 2016, Precipitación 2016							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 73. Resumen modelo de regresión lineal maíz 2016, zona oriental*

	ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	3528584125.293	3	1176194708.431	15775.858	.000b				
	Residuo	83917506967.066	1125554	74556.625						
	Total	87446091092.358	1125557							
a. Variable dependiente: Área estimada cultivo maíz, zona oriental 2016										
b. Predic	tores: (Cons	tante), Humedad relativ	va 2016, Te	mperatura 2016, Pr	ecipitación 20)16				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 74. Análisis de varianza, modelo de regresión lineal maíz 2016, zona oriental*

	Modelo de regresión lineal arroz 2017, zona oriental								
Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación									
1	.588ª	4.72285							
a. Predict	tores: (C	a. Predictores: (Constante), Humedad relativa 2017, Temperatura 2017, Precipitación 2017							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 75. Resumen modelo de regresión lineal arroz 2017, zona oriental

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	22151.750	3	7383.917	331.039	.000b					
	Residuo	41956.235	1881	22.305							
	Total	64107.984	1884								
a. Variable dependiente: Área estimada cultivo arroz, zona oriental 2017											
b. Predic	tores: (Consta	ante), Humedad relativa	2017,	Temperatura 2017, F	Precipitació	n 2017					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 76. Análisis de varianza, modelo de regresión lineal arroz 2017, zona oriental*

Maíz

Modelo de regresión lineal maíz 2017, zona oriental							
Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación							
1	.375a	0.141	0.141	602.63962			
a. Predict	a. Predictores: (Constante), Humedad relativa 2017, Temperatura 2017, Precipitación 2017						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 77. Resumen modelo de regresión lineal maíz 2017, zona oriental

	ANOVA ^a									
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	66390382829.900	3	22130127609.967	60935.244	.000b				
	Residuo	404570234878.326	1113983	363174.514						
	Total	470960617708.226	1113986							
a. Variable dependiente: Área estimada cultivo maíz, zona oriental 2017										
b. Predic	tores: (Cons	tante), Humedad relativ	va 2017, Te	emperatura 2017, Pre	cipitación 20	17				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 78. Análisis de varianza, modelo de regresión lineal maíz 2017, zona oriental*

Modelo de regresión lineal arroz 2018, zona oriental								
Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación								
1	.385ª	0.148	0.147	3.57082				
a. Predict	a. Predictores: (Constante), Humedad relativa 2018, Temperatura 2018, Precipitación 2018							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 79. Resumen modelo de regresión lineal arroz 2018, zona oriental

ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.				
1	Regresión	5735.263	3	1911.754	149.933	.000b				
	Residuo	32986.208	2587	12.751						
	Total	38721.470	2590							
a. Variable dependiente: Área estimada cultivo arroz, zona oriental 2018										
b. Predic	tores: (Consta	ante). Humedad relativa	2018.	Temperatura 2018, F	Precipitació	n 2018				

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 80. Análisis de varianza, modelo de regresión lineal arroz 2018, zona oriental

Maíz

	Modelo de regresión lineal maíz 2018, zona oriental							
Modelo	Modelo R R cuadrado R cuadrado ajustado Error estándar de la estimación							
1	.016a	0.0003	0.0003	42.11326				
a. Predict	a. Predictores: (Constante), Humedad relativa 2018, Precipitación 2018, Temperatura 2018							

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación.

Tabla 81. Resumen modelo de regresión lineal maíz 2018, zona oriental

	ANOVA ^a										
Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.					
1	Regresión	356177.985	3	118725.995	66.943	.000b					
	Residuo	1359631924.074	766626	1773.527							
	Total	1359988102.059	766629								
a. Variable dependiente: Área estimada cultivo maíz, zona oriental 2018											
b. Predic	tores: (Const	ante), Humedad relativa	a 2018, Pr	ecipitación 2018, Te	mperatura	a 2018					

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. *Tabla 82. Análisis de varianza, modelo de regresión lineal maíz 2018, zona oriental*

Al tomar como base el análisis de correlación del apartado anterior, se puede notar claramente que los años en los cuales se obtuvieron los coeficientes de correlación bivariada más bajos o con menor nivel de significatividad, son los años que presentan modelos de regresión lineal con los menores coeficientes de correlación y; por ende, menores coeficientes de determinación ajustados.

Resumen modelos regresión lineal arroz 2013-2018, zona oriental										
Año	R	R cuadrado	R cuadrado ajustado	Sig						
2013	.213	0.045	0.019	.173						
2014	.139	0.019	0.015	.002						
2015	.275	0.076	0.015	.302						
2016	.365	0.133	0.132	.000						
2017	.588	0.346	0.344	.000						
2018	.385	0.148	0.147	.000						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 83. Resumen de modelos de regresión lineal arroz 2013-2018, zona oriental

Las bases de datos de arroz procesadas dieron como resultado de la regresión lineal, modelos anuales donde los coeficientes de correlación más bajo y más alto fueron 0.139 (año 2014) y 0.588 (año 2017), respectivamente; con lo que se alcanzaron coeficientes de determinación ajustados de 0.015 y 0.344 para los años ya mencionados.

Resumen modelos regresión lineal maíz 2013-2018, zona oriental										
Año	R	R cuadrado	R cuadrado ajustado	Sig						
2013	.081	0.007	0.007	.000						
2014	.156	0.024	0.024	.000						
2015	.243	0.059	0.059	.000						
2016	.201	0.040	0.040	.000						
2017	.375	0.141	0.141	.000						
2018	.016	0.000	0.000	.000						

Fuente: elaboración propia a partir de los datos obtenidos de la interpolación. Tabla 84. Resumen de modelos de regresión lineal maíz 2013-2018, zona oriental

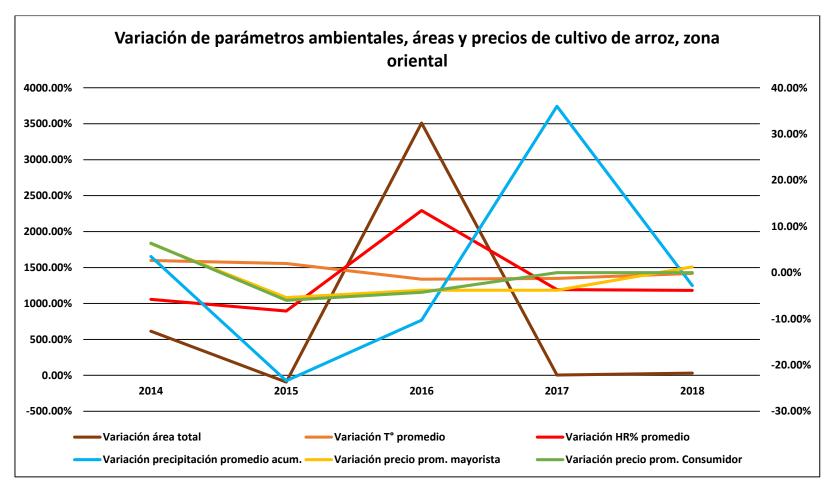
Para el cultivo del maíz, los modelos de regresión lineal anuales presentan en 2017 el coeficiente de correlación más alto (R= 0.375) y el menor en 2018 (R= 0.016). En cuanto a los coeficientes de determinación ajustados obtenidos por los modelos mencionados, en menor fue 0.141 (2017). En el caso del R² ajustado de 2018, por ajuste de visualización a tres decimales, obtuvo 0.000, aunque dicho coeficiente con todos sus decimales es 0.00026189786842401, que automáticamente se convierte es un coeficiente que no permite predecir la variable dependiente, a partir de las variables independientes.

3.5.6 Análisis de variación de parámetros ambientales, áreas y precios del arroz y maíz, zona oriental

Arroz

Año	Área total (ha)	Variación área total	T° promedio estimada	Variación T° promedio	HR% promedio estimada	Variación HR% promedio	Precipitación promedio acum.	Variación precipitación promedio acum.	Precio prom. Mayorista (USD/qq)	Variación precio prom. mayorista	Precio prom. Consumidor (USD/lb)	Variación precio prom. Consumidor
2013	10.48		24.35		85.56		1,934.16		\$38.05		\$0.47	
2014	74.96	615.03%	24.99	2.63%	80.62	-5.77%	2,001.88	3.50%	\$40.44	6.28%	\$0.50	6.38%
2015	4.92	-93.44%	25.48	1.96%	73.91	-8.32%	1,533.56	-23.39%	\$38.26	-5.39%	\$0.47	-6.00%
2016	177.64	3510.05%	25.12	-1.43%	83.84	13.43%	1,375.70	-10.29%	\$36.80	-3.82%	\$0.45	-4.26%
2017	183.81	3.47%	24.80	-1.25%	80.76	-3.67%	1,871.39	36.03%	\$35.40	-3.80%	\$0.45	0.00%
2018	240.84	31.02%	24.76	-0.18%	77.65	-3.85%	1,819.23	-2.79%	\$35.84	1.23%	\$0.45	0.00%

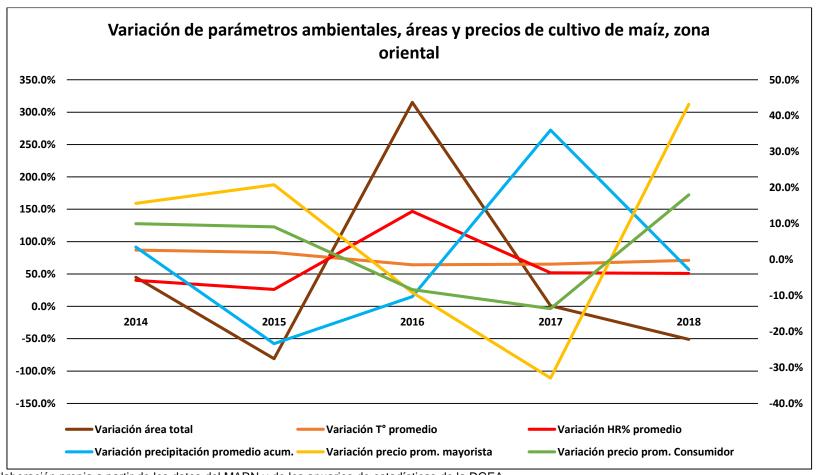
Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA


Tabla 85. Variación de parámetros ambientales, área y precio del arroz, zona oriental

Maíz

Año	Área total (ha)	Variación área total	T° promedio estimada	Variación T° promedio	HR% promedio estimada	Variación HR% promedio	Precipitación promedio acum.	Variación precipitación promedio acum.	Precio prom. mayorista (USD/qq)	Variación precio prom. mayorista	Precio prom. Consumidor (USD/lb)	Variación precio prom. Consumidor
2013	125,507.39		24.35		85.56		1,934.16		\$14.34		\$0.20	
2014	181,756.98	44.82%	24.99	2.63%	80.62	-5.77%	2,001.88	3.50%	\$16.58	15.62%	\$0.22	10.00%
2015	34,816.44	-80.84%	25.48	1.96%	73.91	-8.32%	1,533.56	-23.39%	\$20.03	20.81%	\$0.24	9.09%
2016	144,536.11	315.14%	25.12	-1.43%	83.84	13.43%	1,375.70	-10.29%	\$18.20	-9.14%	\$0.22	-8.33%
2017	145,679.02	0.79%	24.80	-1.25%	80.76	-3.67%	1,871.39	36.03%	\$12.20	-32.97%	\$0.19	-13.64%
2018	71,158.72	-51.15%	24.76	-0.18%	77.65	-3.85%	1,819.23	-2.79%	\$17.47	43.20%	\$0.22	17.98%

Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA


Tabla 86. Variación de parámetros ambientales, área y precio del maíz, zona oriental

Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA

Gráfico 7. Variación porcentual anual de parámetros ambientales, área y precio del arroz, zona oriental¹³

¹³ La variación de área total debe ser interpretada con el eje primario (porcentajes del lado izquierdo) del gráfico. La variación de: parámetros ambientales, precio mayorista y precio de consumidor, debe interpretarse con los porcentajes del eje secundario (lado derecho del gráfico).

Fuente: elaboración propia a partir de los datos del MARN y de los anuarios de estadísticas de la DGEA

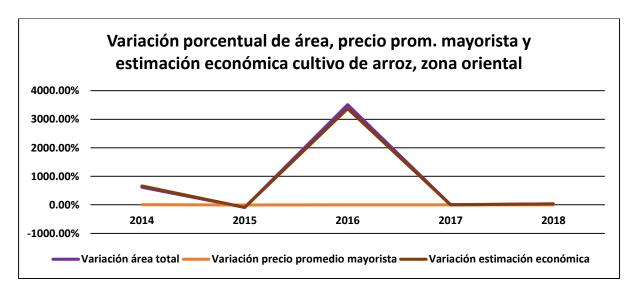
Gráfico 8. Variación porcentual anual de parámetros ambientales, área y precio del maíz, zona oriental¹⁴

¹⁴ La variación de área total debe ser interpretada con el eje primario (porcentajes del lado izquierdo) del gráfico. La variación de: parámetros ambientales, precio mayorista y precio de consumidor, debe interpretarse con los porcentajes del eje secundario (lado derecho del gráfico).

Según los registros procesados de la base de datos de arroz, en el año 2015 respecto a 2014, hubo una disminución de 93.44%, al igual disminuyeron la humedad relativa (5.77%) y la precipitación (23.39%), además de un aumento de temperatura (1.96%). La variación negativa en el área de dicho cultivo presenta una relación causa y efecto con el comportamiento de los parámetros ambientales, aun cuando en el análisis de correlación si bien se obtuvieron coeficientes, no hubo significatividad estadística. Siempre en 2015, los precios presentaron un decremento de 5.39% (mayorista) y 6.00% (consumidor), lo que tampoco permite encontrar una relación con la reducción en el área de arroz para ese año. Posteriormente; en 2018 comparado con 2017, el área de arroz aumentó 31.02%, mientras que los parámetros ambientales disminuyeron 0.18% (temperatura), 3.85% (humedad relativa) y 2.79% (precipitación); por tanto, no se identifica una relación clara entre el área estimada y los parámetros ya mencionados, a pesar que en 2018 fueron registrados algunos de los coeficientes de correlación más altos de todo el periodo de estudio.

En el año 2015 respecto a 2014, el cultivo de maíz tuvo una oscilación negativa de 80.84% en su área estimada; además de obtener un incremento de 1.96% en la temperatura y una reducción en humedad relativa (8.32%) y en precipitación (23.39%); esta relación identificada es respaldada por los coeficientes obtenidos en el apartado de análisis de correlación. Al mismo tiempo, y en línea de la relación identificada entre las variables anteriores, se encontró que los precios promedio tanto a nivel mayorista como de consumidor, presentaron un alza de 20.81% y de 9.09%, respectivamente. Luego; para el año 2018 comparado con 2017, el área estimada de maíz sufrió una reducción de 51.15%, mostrando relación con la disminución de: temperatura (0.18%), humedad relativa (3.85%) y precipitación (2.79%). Finalmente, el comportamiento de los precios para el mismo año muestra una aparente relación con el área estimada del cultivo y los parámetros ambientales, ya que se registró una fluctuación positiva de 43.20% en el precio a nivel mayorista y un alza de 17.98% en precio de consumidor.

3.5.7 Estimación económica de la producción de maíz y arroz, zona oriental

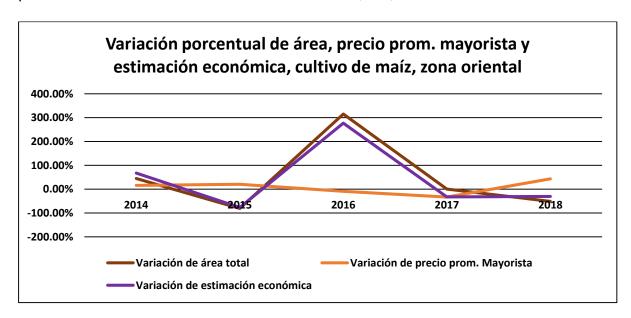

Arroz

Año	Área total (ha)	Rendimiento	Unidad área	Producción estimada (qq)	Precio prom. Mayorista (USD/qq)	Estimación económica a precio prom. mayorista
2013	10.48			2,683.70	\$38.05	\$102,114.83
2014	74.96			19,189.18	\$40.44	\$776,010.50
2015	4.92	256	qq/ha	1,259.71	\$38.26	\$48,196.53
2016	177.64			45,476.19	\$36.80	\$1,673,523.77
2017	183.81			47,055.38	\$35.40	\$1,665,760.44
2018	240.84			61,654.21	\$35.84	\$2,209,686.73

Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Tabla 87. Estimación económica de la producción de arroz, zona oriental

Para este cultivo se determinó el área menos extensa en el año 2015, que coincide con el comportamiento de los parámetros ambientales, por lo que en ese año el área de arroz fue de 4.92 hectáreas, obteniendo una producción estimada de 1,259.71 quintales, que aun precio de \$38.26, es valorada en \$48,196.53.

Por otra parte, el área más extensa se identificó en 2018, con un total de 240.84 hectáreas, una producción de 61,654.21 quintales y una estimación económica de dicha producción de \$2,209,686.73.


Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Gráfico 9. Variación porcentual anual de área, precio prom. mayorista y estimación económica de la producción de arroz, zona oriental

Maíz

Año	Área total (ha)	Rendimiento	Unidad área	Producción estimada (qq)	Precio prom. Mayorista (USD/qq)	Estimación económica a precio prom. mayorista
2013	125,507.39			14,514,929.80	\$14.34	\$208,144,093.36
2014	181,756.98			21,020,195.16	\$16.58	\$348,514,835.69
2015	34,816.44	115.65	qq/ha	4,026,521.26	\$20.03	\$80,651,220.86
2016	144,536.11			16,715,600.85	\$18.20	\$304,223,935.49
2017	145,679.02			16,847,778.82	\$12.20	\$205,542,901.65
2018	71,158.72			8,229,505.97	\$17.47	\$143,769,469.28

Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Tabla 88. Estimación económica de la producción de maíz, zona oriental

En 2015 respecto a 2014, el área estimada de maíz únicamente alcanzó las 34,816.44 hectáreas, siendo la menos extensa de todo el periodo investigado, lo cual está relacionado con el comportamiento de los parámetros ambientales; por lo que en ese año se determinó una producción de 4,026,521.26 quintales, valorada en \$80,651,220.83. Para el año 2018 en comparación a 2017, el área estimada de este cultivo alcanzó las 71,158.72 hectáreas, logrando estimar una producción de 8,229,505.97 quintales que; al precio promedio de mayorista (\$17.47), dicha producción se estimó económicamente en \$143,769,469.28.

Fuente: elaboración propia a partir de los datos de los anuarios de estadísticas de la DGEA y el CENTA Gráfico 10. Variación porcentual anual de área, precio prom. mayorista y estimación económica de la producción de maíz, zona oriental

4. DISCUSIÓN

CEPAL, FAO e IICA (2012) reconocen que la variabilidad climática es uno de los principales retos para la agricultura actual y futura, en donde idealmente la producción de granos básicos debe responder a la demanda de los mismos; por lo que la FAO (2002) plantea el uso de nuevas tecnologías que se adapten a las necesidades actuales y prevean las futuras en materia de agricultura, sobre todo en el sentido que pueden aportar a garantizar la seguridad alimentaria y nutricional de las personas; que según de la Isla (2009), implica un trabajo eficiente por parte de los gobiernos municipales, nacionales, organismos internacionales y otras instancias, para asegurar el acceso a una alimentación adecuada a las necesidades de los habitantes de un espacio geográfico determinado.

Por ello, en seguimiento a lo planteado por CEPAL, FAO e IICA (2012) y FAO (2002), esta investigación se basa en los insumos resultantes de la investigación de Rivas et al. (2020), donde estimaron áreas de cultivos de maíz y arroz para el periodo 2013-2018 a partir del procesamiento y análisis de imágenes del satélite Landsat 8. Lo anterior es respaldado por IICA y PROCISUR (2014), ya que plantean que la teledetección es una de las técnicas más efectivas y eficientes para monitorear áreas cultivadas extensas, teniendo como finalidad principal la adquisición de datos mediante imágenes captadas por uno o más sensores. Según Campos, Figueroa y García (s.f.), los sensores instalados en satélites ofrecen la oportunidad de monitorear espacios geográficos amplios, los cuales tomaría mucho tiempo si se mapean con visitas a campo. En este sentido, la importancia de dichos sensores radica en la precisión, periodicidad y bajo costo, entre otros aspectos.

Cabe mencionar que esta investigación coincide en algunos puntos con el trabajo realizado por Farrell y Rivas (2010), en términos de la metodología para localizar geográficamente las zonas de estudio, tal como se menciona a continuación: utilización de un receptor GPS para localizar las coordenadas de cada lugar; asimismo, para delimitar dichas zonas se usó un software para elaborar polígonos.

A modo de respaldo y principalmente como medio de verificación, se realizaron vuelos fotogramétricos con dron para incrementar la precisión en la localización de las zonas de estudio, obteniendo ortomosaicos que facilitaron la elaboración de los polígonos mencionados anteriormente. Por otra parte, tal como lo recomienda CEPAL, BM y FAO (2016), se adoptó la hectárea como medida de superficie para las estimaciones de áreas de los cultivos de maíz y arroz.

En la investigación realizada por Rivas et al. (2020), utilizaron imágenes satelitales obtenidas de la página web del Servicio Geológico de Estados Unidos (USGS) captadas por los sensores del satélite Landsat 8. A partir de dichas imágenes, se determinaron las áreas ocupadas por los cultivos de maíz y arroz. Relacionado con lo anterior; Campos, Figueroa y García (s.f.) plantean que el desafío en el uso de los sensores remotos consiste en relacionar de forma adecuada la información espacial captada, teniendo claro las variables a estudiar; además de la resolución temporal, espacial y radiométrica. Por su parte, el Consejo Federal de Inversiones de Argentina -CFIA- (2001), realizó una investigación similar, donde usaron imágenes de los satélites Landsat 5 y Landsat 7, para identificar áreas ocupadas por cultivos de maíz y también por caña de azúcar, tabaco y soja; sin embargo, no incluyeron el cultivo de arroz.

Es importante destacar que la FAO (2002) menciona que las investigaciones cuyo eje temático principal es la agricultura o áreas afines deben ser abordadas de forma multidisciplinaria, confirmando así la importancia de esta investigación, articulando la economía, la agricultura y los sistemas de información geográfica. Por su parte, CEPAL, FAO e IICA (2012) abordan la importancia que tiene la investigación agrícola, ya que aporta nuevo conocimiento técnico o mejoras para las prácticas actuales, teniendo en cuenta el uso y desarrollo de herramientas tecnológicas, mencionando que queda más tiempo para adaptar la agricultura al cambio climático, sabiendo que también se debe abordar la mitigación.

Rivas et al. (2020) hicieron uso de la plataforma ArcGIS 10.7.1 (compuesta por ArcCatalog, ArcMap, ArcGlobe y ArcScene), además del programa libre y de código abierto QGIS 3.6.3, para procesar las imágenes satelitales, ya que los procedimientos de ambos programas se complementan. Asimismo, es necesario mencionar que el uso de esos softwares es respaldado por Ballvé y Satorre (2016), además de ser reconocidos por IICA y PROCISUR (2014), como algunos de los programas con mayor frecuencia de uso para el procesamiento y análisis de datos espaciales.

Por su parte, Bocco, Sayago, Violini y Willington (2015) reconocen la utilidad del satélite Landsat; sin embargo, estos autores externan que una de las limitaciones de las imágenes ópticas, es el exceso de nubosidad. En este sentido, Rivas et al. (2020) reportan que para todo el periodo de estudio 2013-2018 fueron procesadas imágenes de los cuadrantes 18050,18051, 19050 y 19051; pero haciendo diferencia entre los meses en los cuales se contó con imágenes útiles para el estudio: para el año 2013, julio y agosto; en los años 2014, 2016, 2017 y 2018, julio, agosto y octubre; finalmente para el año 2015, junio, julio y agosto. Específicamente para el año 2013, se obtuvieron áreas de maíz y arroz incluso menores a las del año 2015, a pesar que en 2013 se registró mayor cantidad de precipitación que en 2015; por lo que se considera que haber procesado imágenes satelitales de dos meses no permitió identificar de forma precisa la superficie cultivada de maíz y arroz, debido al exceso de nubosidad en las imágenes de los demás meses.

Los productos derivados del análisis a partir de imágenes satelitales como los utilizados en esta investigación, pueden ser de suma importancia para orientar el monitoreo de actividad agrícola en campo, estimar superficies agrícolas y, por tanto, estimar la producción del cultivo o cultivos monitoreados, dando seguimiento a grandes extensiones de superficie con datos obtenidos de forma periódica, tal como lo confirman Ballvé y Satorre (2016) y Bocco, Sayago, Violini y Willington (2015).

Además, es importante mencionar la relevancia que tuvo la base de datos otorgada por el Observatorio Ambiental del Ministerio de Medio Ambiente y Recursos Naturales de El Salvador (MARN), para poder comprender el comportamiento y la relación entre los parámetros ambientales incluidos en esta investigación. En este sentido, Basualdo, Berterretche y Vila (2015) señalan que el monitoreo y la constante actualización de datos es fundamental para una investigación de este tipo. CEPAL, BM y FAO (2016) afirman que para una mejor comprensión de las variables que influyen en la producción agrícola es preciso contar con datos completos recopilados de forma sistemática, teniendo en cuenta que la FAO (2015) plantea que la agricultura está siendo afectada directamente por el cambio climático, ya que existen aumentos de temperatura que son cada vez más frecuentes; además de aumentar la inestabilidad del mercado en el costo de insumos para la producción, precios de venta, entre otros factores, por lo tanto es urgente implementar medidas de adaptación.

La FAO (2002) expone también que existen proyecciones que indican que el potencial de producción de cultivos podría aumentar en latitudes templadas y frías; por otro lado, en las zonas de los trópicos y subtrópicos, dicho potencial podría reducirse. Esto podría generar dependencia de un país y propiciar la importación de granos básicos para suplir la demanda nacional de dichos productos. Los granos básicos como el maíz y arroz (además de otros cultivos), son considerados por la FAO (2016) como algunos de los alimentos más importantes para la nutrición, así como algunas de las fuentes principales de ingreso de agricultores.

Para esta investigación se utilizó la base de datos proporcionada por el MARN, y posteriormente en ArcMap 10.7.1, se hizo uso de la geoestadística mediante el método de interpolación denominado IDW (distancia inversa ponderada), que según IICA y PROCISUR (2014) es el método que comúnmente se utiliza para interpolar datos, con el cual se identificaron los valores mínimos y máximos más cercanos a los registros de la base de datos del MARN.

El Ministerio de Agroindustria de Argentina (s.f.), coincide con Farrell y Rivas (2010) al enfatizar que la estimación de superficie de cultivos es de suma importancia y utilidad para diversos actores políticos, económicos y sociales; sobre todo para tomar decisiones en materia de planificación de acciones encaminadas a la asignación de recursos para el sector agrícola. La FAO (2002) menciona que, para realizar investigaciones relacionadas con la agricultura, es ideal involucrar a diferentes actores tales como instituciones del gobierno central, agricultores, municipalidades, la academia, entre otros. Lo anterior, coincide con lo realizado en esta investigación, ya que se tuvo contacto directo con las Agencias de Extensión del CENTA, agricultores y Gobiernos Municipales. En línea con el planteamiento de la toma de decisiones y actores involucrados, IICA y PROCISUR (2014) posicionan a los sistemas de información geográfica, incluyendo el análisis geoestadístico, como herramientas útiles y necesarias para producir y presentar insumos que aporten en los procesos de toma de decisiones en los diferentes niveles de Gobierno, con horizontes temporales definidos en el corto, mediano y largo plazo; adoptando estrategias que consideren la mayor cantidad de variables que inciden la agricultura, con lo que se puede abordar la rotación y diversificación de cultivos, épocas de siembra, entre otros aspectos.

En el análisis de correlación realizado a la base de datos nacional resultante de la interpolación hecha con los registros de las estaciones meteorológicas proporcionados por el MARN, se obtuvieron resultados por cada cultivo.

Para el arroz, los coeficientes más altos de correlación fueron entre los parámetros ambientales, mayoritariamente entre precipitación y temperatura, y temperatura con humedad relativa, presentando relaciones de tipo inversa. La precipitación tuvo en tres de los seis años investigados, una relación de tipo directa. Los registros anuales del área estimada de arroz presentaron mayor correlación con los siguientes parámetros ambientales: precipitación (R= -0.236, año 2013), temperatura (R= 0.182, año 2013) y humedad relativa (R= 0.226, año 2014); en contraposición, las menores correlaciones fueron: R= -0.009 (año 2017), R= -0.057 (año 2016) y R= 0.015 (año 2017) respectivamente en el mismo orden.

En el caso del maíz al igual que para el arroz, los coeficientes más altos fueron obtenidos en las correlaciones entre precipitación, temperatura y humedad relativa. La correlación entre precipitación y temperatura, y entre temperatura con humedad relativa, mostró una relación de tipo inversa; mientras que hubo relación directa entre precipitación y humedad relativa. Por otra parte, dos de las tres correlaciones con coeficientes más altos entre el área estimada de maíz con los parámetros ambientales, se encuentran en el año 2013, algo que también se identificó en el área de arroz. El área de maíz estuvo relacionada con precipitación (R= -0.108) y con temperatura (R= 0.133). En cuanto al coeficiente de correlación más alto entre dicha área estimada y humedad relativa, fue encontrado en el año 2015 (R= -0.098). Finalmente, los coeficientes de correlación más bajos entre el área de maíz con los parámetros ambientales, fueron obtenidos en 2018, precipitación (R= -0.021), temperatura (R= 0.024) y humedad relativa (R= -0.007).

En el caso de ambos cultivos, se identificaron coeficientes de correlación superiores a cero, pues en todos los casos existe asociación entre variables estudiadas; por tanto, se confirma el planteamiento teórico de Larios, Álvarez y Quineche (2017), acerca del aporte de los coeficientes de correlación para determinar la asociación entre variables.

Con los modelos de regresión lineal múltiple obtenidos, se obtuvieron coeficientes de correlación múltiple entre 0.117 y 0.248 para arroz y entre 0.027 y 0.153 para maíz. En este sentido y tal como lo afirman Larios, Álvarez y Quineche (2017), estos coeficientes establecen cuanta asociación existe entre todas las variables incluidas en el modelo. Ya que los coeficientes de determinación ajustados fueron bajos, implica que existe poca asociación entre las variables introducidas.

Para las bases de datos del cultivo de arroz, los coeficientes de determinación ajustados fueron: 0.062 (2013), 0.053 (2014), 0.043 (2015), 0.014 (2016), 0.022 (2017), y 0.036 (2018), por lo que estos modelos de regresión lineal son capaces de predecir bajos porcentajes de variabilidad del área estimada de arroz para el periodo de estudio.

En el caso de las bases de datos anuales del cultivo del maíz, los coeficientes de determinación fueron: 0.020 (2013), 0.016 (2014), 0.010 (2015), 0.019 (2016), 0.023 (2017) y 0.001 (2018), por lo cual los porcentajes de variabilidad del área estimada de maíz para cada año que pueden ser explicados con los modelos de regresión lineal, son incluso inferiores a los obtenidos en el cultivo de arroz.

Según la variación en las áreas estimadas de los cultivos investigados, los parámetros ambientales incluidos y los precios tanto a nivel mayorista como de consumidor, es claro que ante una fluctuación negativa en la precipitación y la humedad relativa (y a veces en la temperatura), generalmente ha correspondido disminución del área estimada de los cultivos.

En el caso del arroz, en el año 2015 respecto a 2014, el área estimada disminuyó un 64.96%, donde se observó relación con la reducción de 23.39% en la precipitación y un 1.09% de aumento en la temperatura de ese año. Para 2017 en comparación con 2016, el área del cultivo aumentó un 91.75% que se corresponde con el 36.03% de incremento en la precipitación y una reducción de 1.09% en temperatura.

Para el cultivo del maíz, en 2015 respecto a 2014 y teniendo en cuenta la oscilación negativa presentada por la lluvia ese año (ya descrita para la base de datos de arroz del mismo año), el área estimada se redujo un 28.75%; además de identificar un alza de 20.81% en el precio a nivel mayorista y un alza de 9.09% en el precio promedio a nivel de consumidor. En 2017 comparado con 2016, el área del cultivo incrementó 7.71%, mostrando relación con el alza de 36.03% en la precipitación. También hubo un decremento de 32.97% en el precio de mayorista y una baja de 13.64% en el precio de consumidor.

Lo encontrado en esta investigación sobre la variación de las áreas estimadas de cultivos en relación a la variabilidad de los parámetros ambientales, coincide con los hallazgos hechos por Basualdo, Berterretche y Vila (2015). Resultados bastante similares fueron determinados por Magaña y Morales (1999) citado en Granados-Ramírez y Longar (2008), al afirmar que la producción agrícola tiene relación con la variabilidad en la precipitación y la temperatura. En este caso, dichas oscilaciones

han aportado de forma positiva o negativa en las áreas estimadas de ambos cultivos. La relación encontrada entre la fluctuación positiva de la temperatura y el decremento tanto de las áreas estimadas como de la precipitación, concuerda con el planteamiento del Instituto Internacional de Investigación sobre Políticas Alimentarias –IFPRI (2009). Carrasco (2016) plantea que los cultivos de maíz y arroz son sensibles a la fluctuación de los parámetros ambientales incluidos en esta investigación.

En cuanto a la extensión de las áreas de cultivos, el que reportó una mayor área estimada en todos los años fue el maíz, lo cual concuerda con la investigación hecha por Granados-Ramírez y Longar (2008). En el caso del arroz, en 2018 se identificó la mayor área estimada del periodo (6,996.89 hectáreas).

Un estudio similar realizado por Granados-Ramírez y Longar (2008) obtuvo que las áreas cultivadas estudiadas presentaron variaciones debido a la fluctuación de los parámetros ambientales, principalmente la precipitación, lo cual también es respaldado por el IICA (2015)

Es necesario aclarar que tal como se ha presentado en la introducción de esta investigación, cada cultivo tiene un requerimiento hídrico, por lo que, en ocasiones, aunque la época lluviosa inicie en mayo, no se registra la precipitación óptima para satisfacer la necesidad hídrica de cada cultivo, sobre todo por la cantidad de días sin lluvia (Granados-Ramírez y Longar, 2008).

Carrasco (2016) enfatiza en que cada cultivo tiene también un requerimiento de temperatura específico. En este caso, la temperatura promedio más alta a nivel nacional fue de 23.10 °C (año 2015) y la precipitación más baja (1,375.70 mm) fue determinada en el año 2016. En este sentido y al comparar con los requerimientos edafoclimáticos del maíz planteados por el CENTA (2014), el requerimiento hídrico del maíz se encuentra entre 500 a 700 mm y una temperatura entre 20 y 27 °C. El CENTA (2019) indica que el arroz presenta la necesidad de aproximadamente entre 800 a 2000 mm de agua, y una temperatura entre 22 y 32 °C.

La variación positiva en la temperatura y el decremento en la precipitación, provocó en ocasiones alza en los precios de ambos cultivos. Esta afirmación concuerda con lo mencionado por el IFPRI (2009), que aplica sobre todo en el caso del maíz.

El IICA (2015) señala que la temperatura, la humedad relativa y la Iluvia, entre otros parámetros ambientales son críticos para la producción agropecuaria; sin embargo, dada la variabilidad que dichos parámetros presentan, también pueden convertirse en factores de riesgo; lo que se identificó en la investigación realizada abordando la estimación económica, en donde en el año 2015 respecto a 2014, hubo una reducción de 28.75% del área estimada de cultivo de maíz, ante la reducción de 23.39% en la precipitación y el incremento de 1.09% en la temperatura; lo cual provocó un cambio negativo de 13.92% en la estimación económica de la producción de maíz para ese año. En el caso del arroz siempre en el año 2015 en comparación con 2014 el área se redujo en 64.96%, ante la oscilación negativa de precipitación ya mencionada y el aumento de temperatura ya señalado, se obtuvo una estimación económica de la producción con una baja de 66.85%.

Para el año 2018 respecto a 2017, la estimación económica de la producción de maíz disminuyó en 17.11%, debido a una disminución de 42.11% en el área estimada del cultivo, concomitante con la fluctuación negativa de la temperatura (0.22%), de la humedad relativa (0.31%) y de la precipitación (2.79%). Por tanto, en este año, lo que ocasionó que la estimación económica no decreciera tanto, fue el alza de 43.20% en el precio por quintal de maíz; por consiguiente, la variabilidad de los parámetros ambientales aparentemente no afectó significativamente en dicha estimación. En referencia al arroz, aplica la fluctuación de temperatura, humedad relativa y precipitación mencionadas para el maíz, igualmente en 2018 comparado con 2017, la superficie cultivada estimada de arroz aumentó 9.09%, lo cual posiblemente aportó para que la estimación económica de la producción registrara una variación positiva de 10.45%.

Zona oriental

La zona oriental presentó algunos de los coeficientes de correlación más bajos de todas las zonas; sin embargo, en su mayoría, más altos que los obtenidos a nivel nacional, por lo que dichos coeficientes aportaron en la construcción de los modelos de regresión lineal.

Algunos de los modelos de regresión lineal obtenidos, presentaron coeficientes de correlación múltiple más bajo que los de nivel nacional, según el siguiente detalle: maíz 2013, arroz 2014 y maíz 2018; en el resto de casos, la correlación múltiple fue mayor que la de los modelos de país; por lo cual se obtuvieron coeficientes de determinación ajustados, que si bien, no predicen un porcentaje alto de la variación en cada una de las áreas de cultivo estimadas, aportan para predecir porcentajes que no son despreciables, teniendo en cuenta que los registros de las bases de datos provienen de tres fuentes de información distintas. Es importante mencionar que estos modelos pueden ser mejorados, en la medida que se cuente con una mayor cantidad de datos espacial y de los parámetros ambientales. En el caso de esta investigación, el año 2013 se eligió como el inicial, pues es desde ese año que hay disponibilidad de las imágenes del satélite Landsat 8.

La variabilidad de los parámetros mostró cierta relación con la variabilidad de las áreas estimadas de ambos cultivos, ya que la producción estimada y la correspondiente estimación económica se vio influenciada por dicha relación. En el caso del arroz en 2015, hubo un aumento del 615.03% en el área estimada, y al mismo tiempo la precipitación experimentó una fluctuación positiva de 3.5%. Lo anterior, tiene una particularidad, y es que en el año 2013 es cuando menos imágenes satelitales se tuvo; por tanto, no pudo analizarse todo el país, y se obtuvo como resultado un área estimada muy baja. Para el maíz en 2015, también se registró una disminución del área estimada de 80.84%, mientras que la precipitación presentó un decremento de 23.39%.

5. CONCLUSIONES

Tal como se ha podido a evidenciar con esta investigación, la economía puede auxiliarse de los sistemas de información geográfica para abordar temáticas de la agricultura; sobre todo cuando se trate de grandes extensiones geográficas, contando con información periódica, actualizada, de resolución espacial aceptable, a un bajo costo y con buena precisión. Por tanto, se puede afirmar que contar con bases de datos actualizadas, permitirá que cualquier investigación y posterior procesamiento y análisis de la información, oriente de forma efectiva y eficiente cualquier proceso de toma de decisiones.

En cuanto a los parámetros ambientales, se comprobó que la precipitación tuvo una correlación de tipo inversa con la temperatura y esta última también presentó correlación del mismo tipo que la anterior con humedad relativa. Por otra parte, se considera que el comportamiento de los parámetros ambientales, ha presentado diversos grados de asociación con el área estimada de cada cultivo, además de que los precios promedio anuales de cada uno de los cultivos, aportaron positiva o negativamente en la estimación económica de la producción para cada año.

Si bien es cierto, esta investigación se aborda desde una perspectiva económica, es importante destacar que actualmente la agricultura debe experimentar cambios drásticos en la adaptación al cambio climático (sin dejar de lado la mitigación), ya que la disminución de la precipitación (especialmente en la cantidad de días consecutivos sin lluvia) es considerada como un factor de riesgo; por lo que se hace necesario construir e implementar sistemas de riego eficientes, además de requerir una gestión efectiva del recurso hídrico de parte de las correspondientes entidades de Gobierno.

Finalmente se debe tener en cuenta que, como país, se debe garantizar la seguridad alimentaria de toda la población, produciendo la mayor proporción de granos básicos demandados a nivel nacional, para reducir al mínimo la dependencia a la importación de los mismos.

6. REFERENCIAS

- Anderson, D., Sweeney, D., Williams, T., Camm, J., & Cochran, J. (2016). Estadística para negocios y economía (12 ed.). México: Cengage Learning.
- Arozarena, A., Otero, I., & Ezquerra, A. (2016). Sistemas de Captura de la Información. Fotogrametría y Teledetección. Madrid, España: DEXTRA Editorial.
- Ballvé, R., & Satorre, E. (2016). Ayudando a la estimación del rendimiento con imágenes satelitales. Argentina: Cultivar Conocimiento Agropecuario S.A. Obtenido de http://www.cultivaragro.com.ar/capacitaciones/Ayudando_a_la_estimaci%C3 %B3n_del_rinde_1454512461.pdf
- Basualdo, A., Berterretche, M., & Vila, F. (2015). *Inventario y características principales de los mapas de riesgos para la agricultura disponibles en los países de América Latina y el Caribe*. San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura (IICA). Obtenido de http://repositorio.iica.int/bitstream/11324/2550/1/BVE17038647e.pdf
- Bocco, M., Sayago, S., Violini, S., & Willington, E. (2015). *Modelos simples para estimar rendimiento de cultivos agrícolas a partir de imágenes satelitales: una herramienta para la planificación.* Obtenido de http://44jaiio.sadio.org.ar/sites/default/files/sts26-35.pdf
- Campos Aranda, D. F. (2005). *Agroclimatología cuantitativa de cultivos*. México, D.F.: Editorial Trillas , S.A. de C.V.
- Campos, A., Figueroa, E., & García, A. (s.f.). Evaluación de la información satelital para el estudio de la dinámica hidrológica de la Llanura Pampeana. Obtenido de https://www.ina.gob.ar/ifrh-2014/Eje3/3.11.pdf
- Carrasco Choque, F. (2016). Efectos del cambio climático en la producción y rendimiento de la quinua en el distrito de Juli, periodo 1997 2014. Revista comuni@cción, vol. 7(núm. 2), páginas 38-47. Obtenido de http://www.scielo.org.pe/pdf/comunica/v7n2/a04v7n2.pdf
- Centro Nacional de Registros de El Salvador. (2015). *Archivos de coberturas geográficas, límites: departamental y municipal.* San Salvador. Obtenido de https://www.cnr.gob.sv/geoportal-cnr/

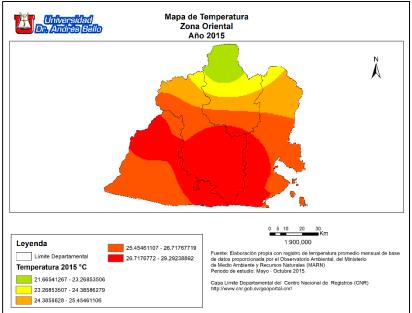
- Centro Nacional de Tecnología Agropecuaria y Forestal "Enrique Álvarez Córdova" (CENTA). (2014). *Guía técnica. El cultivo del maíz.* El Salvador. Obtenido de http://centa.gob.sv/docs/guias/granos%20basicos/GuiaTecnica%20Maiz%20 2014.pdf
- Centro Nacional de Tecnología Agropecuaria y Forestal "Enrique Álvarez Córdova" (CENTA). (2019). *Guía técnica. Cultivo de arroz (Oryza sativa L.).* Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://centa.gob.sv/docs/guias/granos%20basicos/Guia%20Centa_Arroz%20 2019.pdf
- Chiang, A. C., & Wainwright, K. (2006). *Métodos fundamenales de economía matemática*. México: Mcgraw-hill/interamericana.
- Comisión Económica Para América Latina (CEPAL), Banco Mundial (BM) y Organización de las Naciones Unidas parala Agricultura y la Alimentación (FAO). (2016). Manual de estadísticas sobre costos de producción agrícola lineamientos para la recolección, compilación y difusión de datos. Obtenido de http://gsars.org/wp-content/uploads/2016/06/Handbook-on-ACPS-ES-WEBFILE-280616.pdf
- Comisión Económica para América Latina y el Caribe, Organización de las naciones Unidas para la Alimentación y la Agricultura, Instituto Interamericano de Cooperación para la Agricultura. (2012). Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe. Santiago de Chile.
- Comité Regional de Recursos Hidráulicos (CRRH). (2017). Obtenido de http://recursoshidricos.org/tiempo/
- Consejo Federal de Inversiones de Argentina (CFIA). (2001). Estimación de superficies cultivadas y rendimientos productivos utilizando información de sensores remotos. Tucumán. Obtenido de http://www.eeaoc.org.ar/up-load/upload/I_Final00-01.pdf
- De la Isla de Bauer, M. d. (2009). *Agricultura: Deterioro y preservación ambiental.* México: Mundi-Prensa México.
- Dirección General de Economía Agropecuaria (DGEA). (2013). Anuario de Estadísticas Agropecuarias 2012-2013. Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://www.mag.gob.sv/direccion-general-de-economia-agropecuaria/estadisticas-agropecuarias/anuarios-de-estadisticas-agropecuarias/#

- Dirección General de Economía Agropecuaria (DGEA). (2014). Anuario de estadísticas agropecuarias 2013-2014. Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://www.mag.gob.sv/direccion-general-de-economia-agropecuaria/estadisticas-agropecuarias/anuarios-de-estadisticas-agropecuarias/#
- Dirección General de Economía Agropecuaria (DGEA). (2015). *Anuario de estadísticas agropecuarias 2014-2015*. Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://www.mag.gob.sv/direccion-general-de-economia-agropecuaria/estadisticas-agropecuarias/anuarios-de-estadisticas-agropecuarias/#
- Dirección General de Economía Agropecuaria (DGEA). (2016). *Anuario de estadísticas agropecuarias 2015-2016*. Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://www.mag.gob.sv/direccion-general-de-economia-agropecuaria/estadisticas-agropecuarias/anuarios-de-estadisticas-agropecuarias/#
- Dirección General de Economía Agropecuaria (DGEA). (2017). Anuario de estadísticas agropecuarias 2016-2017. Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://www.mag.gob.sv/direccion-general-de-economia-agropecuaria/estadisticas-agropecuarias/anuarios-de-estadisticas-agropecuarias/#
- Dirección General de Economía Agropecuaria (DGEA). (2018). *Anuario de estadísticas agropecuarias 2017-2018*. Ministerio de Agricultura y Ganadería de El Salvador. Obtenido de http://www.mag.gob.sv/direccion-general-de-economia-agropecuaria/estadisticas-agropecuarias/anuarios-de-estadisticas-agropecuarias/#
- Falla, J. (2012). GeoProcesamiento. De GeoDatos a GeoInformación. Costa Rica:
 Universidad para la Cooperación Internacional. Obtenido de
 http://www.ucipfg.com/Repositorio/MGAP/MGAP-05/BLOQUEACADEMICO/Unidad-3/complementarias/GeoProcesamiento_nov_2012.pdf
- Farrell, M., & Rivas, R. (Mayo de 2010). Estimación de rendimiento en girasol a partir de imágenes captadas por el sensor MODIS-TERRA. *Revista Ciencia, Vol. 5*(Nº 19), páginas 29-43. Obtenido de http://www.exactas.unca.edu.ar/revista/v190/pdf/ciencia19-3.pdf
- Granados-Ramírez, R., & Longar Blanco, M. (5008). Variabilidad pluvial, agricultura y marginación en el estado de Michoacán. *Revista análisis económico, vol.* 23(núm. 54), páginas 283-303. Obtenido de https://www.researchgate.net/publication/40424618_Variabilidad_pluvial_agricultura_y_marginacion_en_el_estado_de_Michoacan

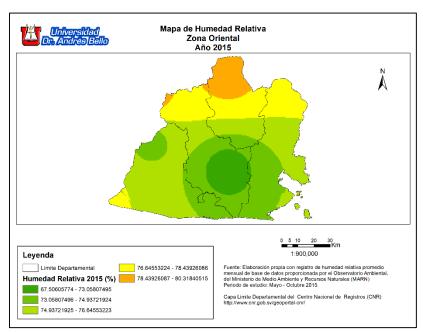
- Instituto Interamericano de Cooperación para la Agricultura (IICA). (2015). Agricultura y variabilidad climática. Lo que debemos saber del clima. Obtenido de http://repositorio.iica.int/bitstream/11324/2601/1/BVE17038689e.pdf
- Instituto Interamericano de Cooperación para la Agricultura, Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur. (2014). *Manual de agricultura de precisión.* Montevideo.
- Instituto Internacional de Investigación sobre Políticas Alimentarias (IFPRI). (2009). Cambio Climático: El impacto en la agricultura y los costos de adaptación.

 Obtenido de
 http://www.fao.org/fileadmin/user_upload/AGRO_Noticias/docs/costo%20ada ptacion.pdf
- Instituto Nacional de Estadística y Geografía de México -INEGI-. (2014). Sistemas de Información Geográfica. México: INEGI. Obtenido de https://www.inegi.org.mx/inegi/spc/doc/internet/sistemainformaciongeografica.pdf
- Instituto Nacional Tecnológico (INATEC). (2017). *Manual del Protagonista: Granos Básicos*. Managua, Nicaragua. Obtenido de https://www.jica.go.jp/project/nicaragua/007/materials/ku57pq0000224spz-att/Granos_Basicos.pdf
- Instituto para la Innovación Tecnológica en la Agricultura (INTAGRI). (2017). La Fenología del Maíz y su Relación con la Incidencia de Plagas. México. Obtenido de https://www.intagri.com/articulos/fitosanidad/la-fenologia-delmaiz-y-su-relacion-con-la-incidencia-de-plagas
- Levin, R., & Rubin, D. (2010). Estadística para administración y economía (7 ed.). México: Pearson Educación.
- Ministerio de Agroindustria de Argentina. (s.f.). Metodología para la estimación de la superficie sembrada con cultivos extensivos. Presidencia de la Nación de Argentina. Obtenido de https://www.agroindustria.gob.ar/sitio/areas/estimaciones/estimaciones/meto dologia/_archivos//000000_Metodo%20de%20segmentos%20aleatorios%20(Version%205).pdf
- Murgida , A. M., Travasso , M. I., González, S., & Rodríguez, G. (2014). Evaluación de impactos del cambio climático sobre la producción agrícola en la argentina. Serie Medioambiente y Desarrollo. Obtenido de https://repositorio.cepal.org/bitstream/handle/11362/37197/1/LCL3770_es.pd f

- Observatorio Ambiental. (2018). Base de datos de temperatura, humedad relativa y precipitación. Disponible por petición al Observatorio Ambiental. San Salvador: Ministerio de Medio Ambiente y Recursos Naturales de El Salvador.
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2015). Construyendo una visión común para la agricultura y alimentación sostenibles: Principios y enfoques. Roma.
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2016).


 Ahorrar para crecer en la práctica: Maíz, trigo, arroz. Guía para la producción sostenible de cereales. Roma.
- Organización de las Naciones Unidas parala Agricultura y la Alimentación (FAO). (2002). Agricultura mundial, hacia los años 2015/2030, informe resumido. Roma. Obtenido de http://www.fao.org/tempref/agl/AGLW/ESPIM/CD-ROM/documents/3B_s.pdf
- Organización Meteorológica Mundial (WMO). (2011). *Guía de prácticas climatológicas*. Obtenido de https://library.wmo.int/pmb_ged/wmo_100_es.pdf
- Organización Meteorológica Mundial (WMO). (s.f.). Base de datos terminológica.

 Obtenido de


 http://wmo.multitranstms.com/MultiTransWeb/TermBase/Account.mvc/Direct
 Access?languageCode=en-CA&username=Guest
- Real Academia Española. (2018). *Diccionario de la Lengua Española, versión electrónica 23.2.* Obtenido de https://dle.rae.es/
- Rivas Domínguez, M. R., Martínez Ventura, M. J., Escuintla Morán, J. J., Monterroza Alemán, J. N., & Cano, S. A. (2019). Estimación geoespacial de efectos por variación de precipitación en la producción de granos básicos, El Salvador 2013-2017. San Salvador: Universidad Dr. Andrés Bello. Obtenido de https://www.researchgate.net/publication/333149034_Estimacion_geospacial _de_efectos_por_variacion_de_precipitacion_en_la_produccion_de_granos_basicos_El_Salvador_2013-2017
- Sydsaeter, K., Hammond, P., & Carvajal, A. (2012). *Matemáticas para el análisis económico*. España: Pearson educación.
- Triola, M. (2013). Estadística (11 ed.). México: Pearson Educación.

Comisión de Acreditación de la Calidad de la Educación Superior UNIVERSIDAD DR. ANDRÉS BELLO (UNAB) ACREDITADA 2019 - 2024

Universidad Doctor Andrés Bello, Dirección Nacional de Investigación y Proyección Social Área: Economía, Administración y Comercio