
INDICADORES DE CIENCIA Y TECNOLOGÍA.

2009

ESTADÍSTICAS SOBRE

ACTIVIDADES CIENTIFICAS Y TECNOLOGICAS.

SECTOR DE EDUCACIÓN SUPERIOR

El Salvador, novjembre de 2010.

CONSEJO NACIONAL DE

CIENCIA Y TECNOLOGÍA

Colonia Médica, Avenida Dr. Emilio Álvarez, Pasaje Dr. Guillermo Rodríguez Pacas, Edificio Espinoza # 51, San Salvador, El Salvador, C. A.

PBX (503) 2226-2800 PBX (503) 2234-8400 Fax (503) 2225-6255

http://www.conacyt.gob.sv

AUTORES

¥47'77'	3.4	-
William	Marroa	nin
WILLIAM	Mulloy	ALIL

Consultor

Directores Junta Directiva

(Sector Académico)

Roberto Argueta Quan

Nelson Antonio Quintanilla Juárez

Rafael Antonio Ibarra

Ángela Lorena Duque de Rodríguez

Departamento de Desarrollo Científico y Tecnológico

José Roberto Alegría Coto

Doris Salinas de Alens

Sonia Montoya de Ledesma

César Ulises Trujillo Martínez

Diseño de portada

José Roberto Alegría Coto ralegria@conacyt.gob.sv

Publicación del Departamento de Desarrollo Científico y Tecnológico

Noviembre de 2010. San Salvador, El Salvador, C. A.

Tabla de Contenidos

INTRODUCCIÓN	
TECNOLOGÍA	
CAPITULO IGASTOS EN ACTIVIDADES	8
CIENTIFICAS Y TECNOLOGICAS	
E INVESTIGACION Y DESARROLLO	8
CAPITULO IIRECURSOS HUMANOS	22
DEDICADOS A INVESTIGACION	
Y DESARROLLO	23
CAPITULO III	37
PROYECTOS DE INVESTIGACION Y DESARROLLO	
PROYECTOS DE INVESTIGACION Y DESARROLLO CAPITULO IV	38
PROYECTOS DE INVESTIGACION Y DESARROLLO	38
PROYECTOS DE INVESTIGACION Y DESARROLLO CAPITULO IV	38 44 45
PROYECTOS DE INVESTIGACION Y DESARROLLO CAPITULO IV	38 44 45 48

INTRODUCCIÓN

Sistema de Indicadores de Ciencia y Tecnología.

Según el Artículo 26 de la Ley del Consejo Nacional de Ciencia y Tecnología (CONACYT), decreto No. 287, tomado del Diario Oficial, del 10 de agosto de 1992, el Consejo, a través del Departamento de Desarrollo Científico y Tecnológico, tiene entre sus atribuciones "Mantener un Registro Nacional de Estadísticas de Ciencia y Tecnología", que sirva de base como un medio para realizar una mejor planificación, financiación, programación, gestión y evaluación del desarrollo de la Ciencia y Tecnología en el país.

El CONACYT, es consciente de la necesidad de cuantificar y medir los esfuerzos que realizan las diferentes instituciones de los diferentes sectores productivos del país, en materia científica y tecnológica, a través de estadísticas e indicadores, que permitan tener una visión más específica de las Actividades Científicas y Tecnológicas (ACT) que están directamente relacionadas con la generación, difusión, transmisión y aplicación de los conocimientos científicos y tecnológicos, así como de la investigación y desarrollo (I+D).

En ese contexto se ha definido como línea estratégica y herramienta de consulta para la toma de decisiones, desarrollar el **Sistema Nacional de Indicadores de ACT e I+D,** conformado por las diferentes entidades que las realizan y la publicación sistemática de esos indicadores. Como primera fase de este proceso se da el levantamiento de información del sector de Educación Superior y sus resultados se presentan en esta publicación.

Metodología.

Los resultados se obtuvieron a través de una encuesta diseñada para el sector de Educación Superior, siguiendo la metodología establecida por la Red Iberoamericana de Indicadores de Ciencia y Tecnología (RICYT) para los países de Iberoamérica y a su vez, se tomó en cuenta el Manual de Frascati.

La encuesta se elaboró en el CONACYT, luego fue sometida a discusión por un grupo clave, que representa al sector educativo, en la Junta Directiva del CONACYT, y finalmente se presentó en un taller a los encargados de manejar estadísticas y finanzas de las instituciones de educación superior para facilitar el llenado de la encuesta.

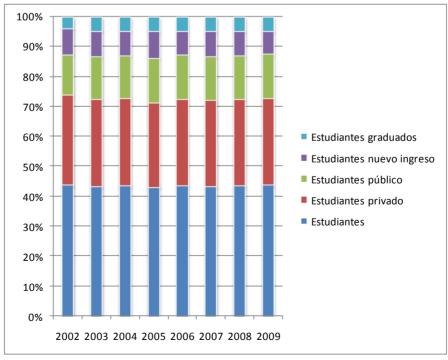
A la encuesta, se le adjuntó el "Instructivo para la Presentación de Indicadores de Ciencia y Tecnología, Estadísticas sobre Actividades de I+D, Sector Académico, 2009" en donde se explica cómo llenar la encuesta y se aclaran los conceptos establecidos en la misma. Durante el proceso de llenado de las encuestas, el personal de la Unidad de Estadísticas e Indicadores del Departamento de Desarrollo Científico y Tecnológico, del CONACYT, para complementar la encuesta, brindó el apoyo directo a los diferentes profesionales de las instituciones que aceptaron el compromiso de brindar su información. Posteriormente los datos fueron procesados y analizados. Una vez terminado este proceso, se presentó nuevamente al grupo clave de Junta de Directores del CONACYT, para conocer sus observaciones finales, antes de la presentación de la divulgación de estos resultados.

El CONACYT agradece el apoyo recibido de parte de: 23 universidades (de 24), 7 institutos tecnológicos (de 8) y 5 institutos especializados (de 5), que brindaron sus datos de presupuesto y datos generales.

En la presente publicación los valores monetarios están expresados en miles de dólares, a menos que se indique lo contrario.

La información estadística incluida en la presente publicación puede ser consultada en la página Web del Consejo: http://www.conacyt.gob.sv

Educación Superior en El Salvador.


De acuerdo al informe del MINED "Educación superior en cifras: El Salvador 1997-2006" presentado en noviembre del 2007, para el año 2006 se tenían 26 universidades (1 pública y 25 privadas), 5 institutos especializados (1 público y 4 privados) y 8 institutos tecnológicos (5 públicos y 3 privados). En total, 39 instituciones de educación superior para el 2006. Para el 2009, se tienen 24 Universidades, 6 Institutos especializados y 8 institutos tecnológicos. De estas instituciones, 9 tienen un total de 20 centros regionales concentrados principalmente en los departamentos de Santa Ana y San Miguel. La población universitaria para el periodo 2001-2009 se presenta en el cuadro No. 1, en donde se observa que la mayor cantidad de estudiantes se encuentran en el sector privado.

Cuadro No. 1 Estudiantes en el Sistema de Educación Superior del país.

	2002	2003	2004	2005	2006	2007	2008	2009
Estudiantes	113,366	116,521	120,264	122,431	124,956	132,246	138,615	143,849
Estudiantes privado	77,838	78,496	80,156	79,993	82,812	87,588	92,270	95,294
Estudiantes público	35,528	38,025	40,108	42,438	42,144	44,658	46,345	48,555
Estudiantes nuevo ingreso	22,330	23,201	22,503	25,085	23,240	25,363	25,866	24,964
Estudiantes graduados	10,187	12,545	13,073	14,015	13,389	14,811	15,801	16,168
Eficiencia Académica (en %)	45.62	54.07	58.09	55.87	57.61	58.40	61.09	64.77

Fuente:MINED.

Gráfico No. 1. Población estudiantil en las Instituciones de Educación Superior.

Fuente: MINED.

Cuadro No 2. Personal docente y presupuesto ejecutado por las Instituciones de Educación Superior.

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Docentes	7285	7501	7027	7331	7890	8053	8070	8583	8370	8562	8893
Presupuesto ejecutado en millones de US\$	96.66	108.53	109.15	117.43	126.45	143.14	149.19	166.92	164.98	192.41	193.72

Fuente: MINED, 2007, 2008 y 2009 CONACYT.

Políticas en materia de Educación Superior.

Eventos que incidieron en la Educación Superior en las últimas cuatro décadas, fueron: i) la Ley de Universidades Privadas (D.L. N° 244, 24 de marzo de 1965; D.O. N° 62, Tomo 206, 30 de marzo de 1965). La primera universidad privada en el primer año de aprobación de la ley fue la Universidad Centroamericana "Dr. José Simeón Cañas"; en el período 1976-1995 fueron autorizadas 41 nuevas instituciones privadas, dedicadas a impartir enseñanza a ese nivel y facultadas para extender títulos universitarios a sus graduados, y se fundó una nueva universidad estatal, la Universidad Militar; ii) la Reforma Educativa de los 60 (1968); iii) el cierre de la Universidad de El Salvador, por cuatro años; iv) el conflicto armado (1980-1992), v) Acuerdos de Paz (1992), vi) el Plan Decenal de Reforma Educativa (1995-2005), que comprendió: a) la Ley de Educación Superior (D.L. N° 522, 30 de noviembre de 1995; D.O. N° 236, Tomo 329, 20 de diciembre de 1995), b) el Sistema de Evaluación, y c) la Comisión de Acreditación; vii) el Plan de Educación Nacional 2021 (1995-2021)¹.

El impacto de la Ley de Educación Superior de 1995 al 2004 puede resumirse en: i) la creación de la Dirección Nacional de Educación Superior; ii) la Clasificación de las Instituciones de Educación Superior (IES) en: (a) Universidades, (b) Tecnológicos, (c) Institutos Especializados; iii) el establecimiento de requisitos de creación y funcionamiento de las IES; iv) el cierre de universidades (10 en 1997-98), (3 en 2001-02), (2 en 2004-09); v) la creación del Consejo de Educación Superior; vi) la Calificación y Evaluación de las IES; vii) Inversiones en infraestructura de las IES; viii) proceso de Acreditación de IES. Actualmente existen dos tipos de instituciones de Educación Superior: i) la Educación Pública: a) Universidad de El Salvador, b) Institutos Tecnológicos; ii) la Educación Privada: a) Universidades, b) Institutos Especializados, acreditadas o no acreditadas¹.

Las Instituciones de Educación Superior Acreditadas hasta la fecha, son 12 de 31 Instituciones de Educación Superior (IES) privadas autorizadas: 23 universidades, cuatro Institutos Especializados, y cuatro Institutos Tecnológico. Las IES acreditadas son: i) Universidad Don Bosco, ii) Universidad Centroamericana José Simeón Cañas, iii) Universidad Católica de El Salvador, iv) Instituto Especializado Escuela Superior de Economía y Negocios, v) Instituto Tecnológico Centroamericano, vi) Universidad Dr. José Matías Delgado, vii) Universidad Tecnológica de El Salvador, viii) Universidad Francisco Gavidia, ix) Instituto Superior de Economía y Administración de Empresas, x) Universidad Salvadoreña Alberto Masferrer, xi) Universidad Evangélica de El Salvador, y xii) Instituto Especializado Escuela de Comunicación Mónica Herrera¹.

Fortalecimiento de las Instituciones de Educación Superior.

De las acciones que se realizan en procura del fortalecimiento de las Universidades No Estatales (Corporaciones de Utilidad Pública) son: i) Re-acreditación institucional, ii) Acreditación de carreras, iii) Incentivos públicos para investigación, iv) Becas con financiamiento público + privado¹.

_

Orozco, C. 2008. Desarrollo Humano en el marco del Plan Nacional de Educación 2021. Vice Ministro de Tecnología Educativa, MINED, Ponencia en Curso de Formación Pedagógica para Profesionales, Departamento de Ciencias de la Educación, Universidad de El Salvador. Octubre.

Acciones para el fortalecimiento de las IES acreditadas y las Estatales son:

- i) Creación del Fondo de Investigación de Educación Superior (FIES), el cual está provisto inicialmente con un capital semilla de US \$ 1.8 millones de dólares, que provienen de lo establecido en el Artículo 3, de la Ley de Disolución y Liquidación del Fondo de Garantía para el Crédito Educativo EDUCRÉDITO, aprobado mediante Decreto Legislativo No. 106, de fecha 21 de septiembre de 2006, publicado en el Diario Oficial No 193, Tomo No. 373, del 17 de octubre de 2006, que dispone que los recursos financieros remanentes de la liquidación serán destinados pasa la creación de un Fondo de Investigación de Educación Superior, que será desarrollado de conformidad a los lineamientos que al efecto determina el Ministerio de Educación¹.
- ii) El Fondo es adjudicado por concurso destinado a proyectos de investigación aplicada científica y tecnológica a nivel superior universitario (Instituciones de Educación Superior, acreditadas y estatales)¹.
- iii) Mediante Acuerdo No. 15-0029 de fecha 10 de enero de 2008, se autorizó la operativización del FIES, destinado para el financiamiento de proyectos científico tecnológicos, presentados por Instituciones de Educación Superior Acreditadas y/o estatales. Así mismo, se autorizó la "Normativa para Funcionamiento de FIES", la cual se encuentra publicada junto con el acuerdo ya mencionado en el Diario Oficial No. 68, Tomo No. 379, del 15 de abril de 2008. La normativa implica que para acceder a los recursos del fondo las universidades deben poner una contrapartida¹.
- iv) Como requisitos para la financiación de los proyectos de investigación de las IES, acreditadas y estatales, se toma en cuenta: i) las áreas del conocimiento científico y tecnológico de mayor potencialidad, propuestas en la Política Nacional de Ciencia Tecnología e Innovación, publicada por el CONACYT en noviembre de 2006, y ii) que los investigadores que desarrollaran los proyectos de investigación pertenezcan a la Red de Investigadores Salvadoreños (REDISAL) que administra el Consejo².
- v) El MINED se vincula con el CONACYT mediante la representación que tiene en la Junta Directiva.
- vi) El MINED firmó un Convenio Marco de Cooperación con el CONACYT en apoyo al FIES, el 13 de octubre de 2008.

En el Convenio, el MINED se compromete: a) aportar recursos financieros para la ejecución de la asistencia técnica que fortalezca al FIES, b) autorizar las propuestas de Diplomado sobre Investigación Científica a desarrollar (con todos los elementos formales) que presente el CONACYT, c) Que todos los investigadores de las IES pertenezcan a REDISAL para participar en la ejecución de los proyectos a ser financiados por el FIES².

En el Convenio Marco el CONACYT se compromete: a) elaborar una propuesta de Diplomado en Formulación y Gestión de Proyectos de Investigación Científica Tecnológica, estructurada en módulos presenciales y a distancia y contar con profesores extranjeros y salvadoreños; b) elaborar una propuesta para la formación de Evaluadores de Proyectos de Investigación Científica y Tecnológica; c) establecer y administrar la Red Nacional de Evaluadores de Proyectos Científicos y Tecnológicos; d) administrar REDISAL².

² MINED, 2008. Convenio Marco de Cooperación entre el Ministerio de Educación y el Consejo Nacional de Ciencia y Tecnología "CONACYT" en apoyo al Fondo de Investigación de Educación Superior", Ministerio de Educación, el 13 de octubre de 2008.

Consejo Nacional de Ciencia y Tecnología.

El CONACYT es el rector de la *Política Nacional de Ciencia Tecnología e Innovación* (noviembre de 2006), la cual establece como prioridades el desarrollo del recurso humano, la educación en ciencia y tecnología, para apoyar la competitividad y productividad del país. En la *Política* el Consejo ha propuesto a los diferentes sectores de la nación, las áreas del conocimiento científico y tecnológico de mayor potencialidad para el desarrollo científico, tecnológico y de Innovación del país. La política es el marco de referencia para concebir e identificar planes, programas, proyectos, instrumentos y/o actividades, en tres escenarios posibles: corto, mediano y largo plazo, con el horizonte al 2030, en los siete componentes estratégicos establecidos: i) Formación y capacitación de recursos humanos; ii) Información científica y tecnológica; iii) Transferencia, Innovación y Desarrollo Tecnológico, iv) Tecnologías de Información y Comunicaciones (TIC); v) Ciencia y tecnología, orientada al desarrollo de zonas y regiones del país; vi) Infraestructura de ciencia y tecnología; vii) Financiamiento al desarrollo científico y tecnológico y de innovación [CONACYT, 2006. Política Nacional de Ciencia Tecnología e Innovación, Consejo Nacional de Ciencia y Tecnología, noviembre³.

El CONACYT, es una entidad autónoma adscrita al Ministerio de Economía, que para tener la capacidad de apoyar el desarrollo de la ciencia y la tecnología en el país, *necesita ser fortalecido en su infraestructura y condiciones de operatividad, y en su presupuesto institucional.*

-

³ CONACYT, 2006. Política Nacional de Ciencia Tecnología e Innovación. Consejo Nacional de Ciencia y Tecnología, noviembre. www.conacyt.gob.sv.

	CAPITULO I
GASTOS EN ACTIVIDADES CIENTIFICAS Y INVESTIGACIO	TECNOLOGICAS E ON Y DESARROLLO

GASTOS EN ACTIVIDADES CIENTIFICAS Y TECNOLOGICAS (ACT) e INVESTIGACIÓN Y DESARROLLO (I+D).

La información que se presenta muestra los esfuerzos financieros en Actividades Científicas y Tecnológicas (ACTs) y de Investigación y Desarrollo (I+D) que han realizado las Instituciones de Educación Superior (IES) en el año 2009. Con fines de comparación en algunos cuadros y gráficos se dejan datos de 2007 y 2008.

1. Presupuesto Total y Gastos.

Los resultados se obtuvieron a través de una encuesta. Las instituciones que brindaron sus datos de presupuesto y datos generales son 23 universidades (de 24), 7 institutos tecnológicos (de 8) y 5 institutos especializados (de 6).

- Se observa que el sistema de educación superior del país destina el 60.5 % de su presupuesto de 193,621,093.00 dólares al pago de salarios de su personal académico y administrativo, un 33.2 % a gastos de funcionamiento y un 6.3 % a inversiones en equipos e instrumentos e inversiones en terrenos y edificios (Gráfico No. 1). Al comparar con el año 2008, cuyo presupuesto liquidado de gastos fue de 192,414,694.90 de dólares, hay un incremento 1.5 puntos porcentuales dedicados a salarios y una disminución de 2.7% en inversiones en equipos, instrumentos e inversiones en terrenos y edificios. Según datos del MINED para el año 2006, el 46.8% del presupuesto ejecutado por las instituciones de educación superior proviene de ingresos por parte de los estudiantes, 30.56% de subsidio del gobierno, un 8.11% por venta de servicios y un 15.24% de otros. Para el 2006, el ingreso del sector de educación superior fue de 191,085,939.40 dólares.
- La ejecución presupuestaria en este sector para el año 2009 fue de 97% (para el 2008 fue de 99%).
- La población estudiantil del sector de educación superior para el año 2009 fue de 143,849, distribuida de la siguiente manera: 131,961 en Universidades, 8,386 en institutos especializados y 3,502 en institutos tecnológicos. De esta información podemos estimar que el costo anual promedio por estudiante en el país es de 1,346.00 dólares (Incluye sectores público y privado). Según el MINED para el 2007 el gasto anual por estudiante en el sector público fue de 1,356.00 dólares, para el 2008 fue de 1,399.90 dólares y para el año 2009 de 1415.31 dólares
- En relación a los gastos por personal docente y administrativo para el año 2009 y, considerando que en la encuesta se reportan 7,538 como personal docente y 4,219 como personal administrativo, podemos estimar los gastos anuales promedio para cada una de estas poblaciones: 10,409.46 dólares gasto anual promedio por docente y 9,204.67 dólares gasto anual promedio por administrativo. Según datos del MINED, para el año 2006, el gasto anual promedio por docente es de 6,371.84 dólares y no reporta datos para el sector administrativo. El personal de las IES se incrementó de 11,638 personas en el 2008 a 11,757, siendo el incremento, principalmente, en personal administrativo.

9

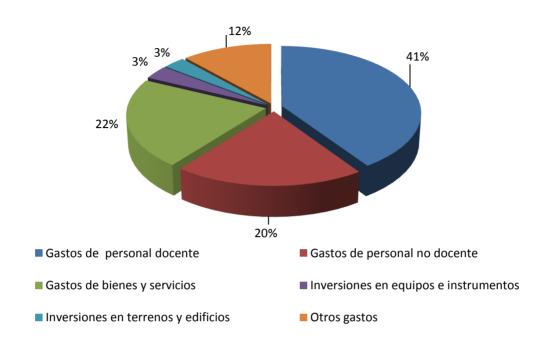
⁴ Cuando se hace referencia al MINED se refiere al documento "Educación superior en cifras: El Salvador 1997-2006", publicado en noviembre de 2007. A la fecha no se ha publicado un documento similar que actualice la información.

- Según datos del MINED, en el periodo (1997-2009) los estudiantes del sector privado han crecido de 87,099 a 95,294 estudiantes mientras que el sector público creció de 28,492 a 48,555 estudiantes. De tal forma que en el periodo el sector público pasó de atender el 24.65% al 33.75% de los estudiantes totales y creció en 1.7 su población estudiantil con relación al año 1997. Se puede concluir que el sector privado está saturado, es decir, admite cada año a un número limitado de estudiantes. Por lo que el crecimiento de los estudiantes de nuevo ingreso ha estado siendo absorbido por el sector público; sin embargo, también este sector está llegando a su capacidad máxima. Este es un problema potencial no solo porque con el bachillerato gratuito se incrementan los estudiantes de nuevo ingreso sino porque en las condiciones actuales ya existen problemas de admisión.
- La eficiencia académica de las instituciones de educación superior (graduados/nuevo ingreso) es del 64.77% (ver cuadro 2). Este dato es de los más altos en la región centroamericana.

Cuadro No. 1. Presupuesto y Gastos, en Dólares Americanos.

Rubro	Año 2008	%	Año 2009	%
Presupuesto liquidado de gastos	\$ 192,414,694.90		\$ 193,621,093	
Gastos de personal docente	\$ 75,471,313.79	39	\$ 78,476,911	40.5
Gastos de personal no docente	\$ 38,224,359.27	20	\$ 38,834,519	20.0
Gastos de bienes y servicios	\$ 41,258,328.22	21	\$ 41,827,646	21.6
Inversiones en equipos e instrumentos	\$ 7,604,643.14	4	\$ 6,507,074	3.4
Inversiones en terrenos y edificios	\$ 8,835,065.95	5	\$ 5,562,653	2.9
Otros gastos	\$ 21,090,716.73	11	\$ 22,508,597	11.6
TOTAL	\$192,484,427.10	100	\$193,717,400	100

Gráfico No. 1. Presupuesto y Gastos.



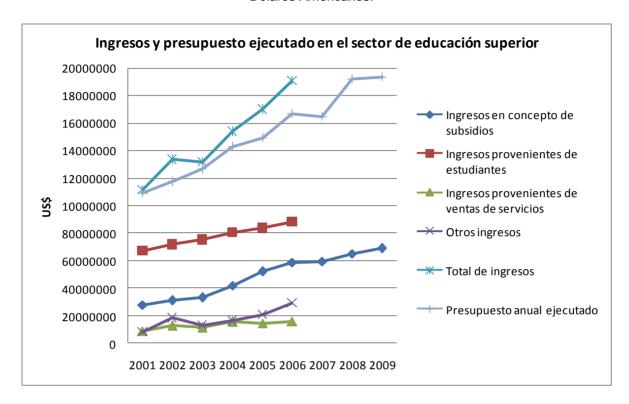


Gráfico No. 2. Costo anual promedio por estudiante en el sector público, Dólares Americanos.

Fuente: MINED.

Gráfico No. 3. Presupuesto ejecutado e ingresos del sistema de educación superior, en US Dólares Americanos.

Fuente: MINED. Los datos del presupuesto del 2007 al 2009 son del CONACYT.

Cuadro No. 2. Estudiantes en Instituciones de Educación Superior.

	2002	2003	2004	2005	2006	2007	2008	2009
Estudiantes	113,366	116,521	120,264	122,431	124,956	132,246	138,615	143,849
Litualities	110,000	110,521	120,204	122,401	124,330	132,240	130,013	140,040
Estudiantes privado	77,838	78,496	80,156	79,993	82,812	87,588	92,270	95,294
Estudiantes público	35,528	38,025	40,108	42,438	42,144	44,658	46,345	48,555
Estudiantes nuevo								
ingreso	22,330	23,201	22,503	25,085	23,240	25,363	25,866	24,964
Estudiantes								
graduados	10,187	12,545	13,073	14,015	13,389	14,811	15,801	16,168
Eficiencia								
Académica (en %)	45.62	54.07	58.09	55.87	57.61	58.40	61.09	64.77

Fuente: MINED.

Estudiantes en Educación Superior, 1997-2009

100000
80000
40000
20000
0
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Estudiantes privado Estudiantes público

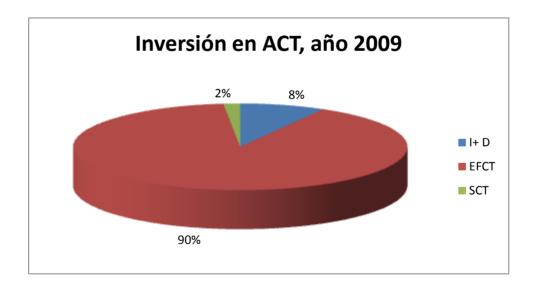
Gráfico No. 4. Estudiantes en Instituciones de Educación Superior.

Fuente: MINED.

2. Recursos financieros dedicados a ACTs e I+D.

Se presenta los recursos financieros destinados a las actividades científicas y tecnológicas en sus tres componentes: i) Investigación y desarrollo (I+D), ii) Enseñanza y Formación Científica y Técnica (EFCT) y, iii) Servicios Científicos y Tecnológicos (SCT), según se establecen sus definiciones en el Manual de Frascati.

2.1 Inversión en ACT e I+D.


La inversión total en ACT para el 2009 fue de \$193.621 millones (Cuadro No. 3). La Inversión en I+D representa el 8% del total de la Inversión en ACT (Gráfico No. 5). Estos datos evidencian lo siguiente:

- El mayor esfuerzo del sector académico sigue siendo la enseñanza y formación y ha sido la prioridad en los últimos 11 años. Como se observa en el Gráfico 5 la inversión en enseñanza y formación científica y tecnológica es lo que más crece en las IES (De 139.406 (2007) a 174.461 (2009) millones de dólares).
- La inversión en I+D tiene una tendencia a decrecer en el periodo 2007-2009. De aproximadamente 18 millones en el 2007 pasó a 16 millones en el 2009.
- El bajo porcentaje de inversión en SCT (2%) nos indica la poca vinculación del sector académico con el sector productivo del país. Sin embargo, SCT tiene un leve incremento con respecto al 2007, esto indica que se realizan avances muy tímidos en esta dirección.

Cuadro No. 3. Inversión en ACT años 2008 y 2009 (en miles de dólares).

IES	2008						
	I+ D	TOTAL ACT					
Universidades	\$ 22,995.19	\$ 141,373.07	\$ 2,761.22	\$ 167,129.48			
Institutos especializados y tecnológicos	\$ 864.05	\$ 16,454.94	\$ 8,519.98	\$ 25,838.97			
Total	\$ 23,859.24	\$ 157,828.02	\$ 11,281.20	\$ 192,968.46			

IES	2009							
	I+ D	EFCT	SCT	TOTAL ACT				
Universidades	\$ 15,291.51	\$ 149,572.39	\$ 2,782.01	\$ 167,645.90				
Institutos especializados y								
tecnológicos	\$ 716.19	\$ 24,889.06	\$ 369.93	\$ 25,975.18				
Total	\$ 16,007.70	\$ 174,461.45	\$ 3,151.94	\$ 193,621.08				

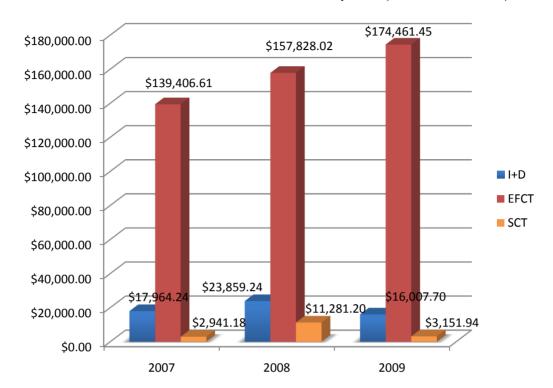


Gráfico No. 5. Inversión en ACT años 2007, 2008 y 2009 (en miles de dólares).

2.2 Gastos internos en I +D.

Del total de gastos internos en I+D 16.01 millones, (Cuadro No. 4), el 32.70% es en gastos corrientes y el 67.30% es en gastos de capital (Gráfico No.6).

Cuadro No. 4. Gastos internos en I+D años 2008 y 2009, en miles de dólares Americanos.

	2008	2009
Gasto en actividades I+D	Miles de dólares	Miles de dólares
Retribuciones a investigadores en EJC (incluye la retribución de los becarios)	\$3,442.87	\$2,245.65
Retribuciones a técnicos y auxiliares en EJC	\$1,943.29	\$1,118.68
Otros gastos corrientes	\$7,310.99	\$1,870.83
A. Total gastos corrientes en I+D (1+2+3)	\$12,697.15	\$5,235.16
Equipos e instrumentos	\$9,099.26	\$8,592.52
Terrenos y edificios	\$1,544.61	\$1,842.15
Adquisición de software específico para I+D	\$293.14	\$337.86
B. Total gastos de capital en I+D (4+5+6)	\$10,937.01	\$10,772.53
C. Total gastos internos en I+D (A+B)	\$23,634.16	\$16,007.69

- De los gastos corrientes se destina un 64.2 7% en salarios de investigadores, técnicos y auxiliares y el 35.8% en consumibles para el desarrollo de las investigaciones (Gráfico No. 6); mientras que la inversión en capital se destina mayoritariamente (79.76%) para la compra de equipo e instrumentos y muy poco en la construcción de infraestructura de investigación (17.1%) (Gráfico No. 7).
- La inversión en software para I+D es baja 337,860.00 dólares (en el 2008 fue de 293,140.00 dólares y en el 2007 fue de 286,310.00 dólares).
- Se puede concluir que el gasto en investigación está más enfocado en inversiones de capital y consumibles que en retribuciones económicas para los investigadores.

Gráfico No. 6. Gastos corrientes en I+D, año 2009.

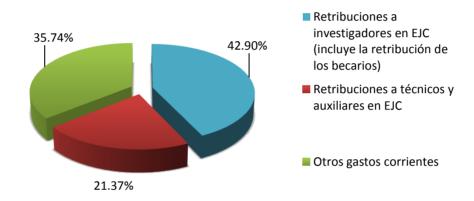
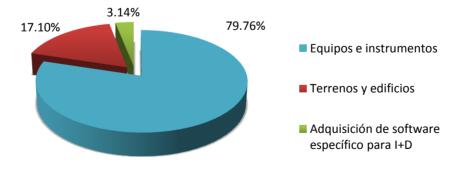
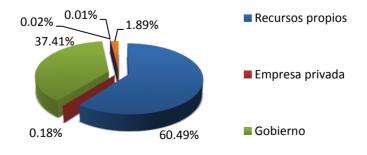



Gráfico No. 7. Gastos de capital en I+D, 2009.

2.3 Gastos en ACT e I+D según fuente de financiamiento.


La principal fuente de recursos para las actividades científicas y tecnológicas (ACT) en el sector de educación superior (Cuadro No. 5), son los recursos propios con un 60.49% y el gobierno con un 37.41%. (Gráfico No. 8). La principal fuente de recursos para Investigación y Desarrollo es el gobierno con un 64.55% y los recursos propios con un 23.12% (Gráfico No. 10).

• Un cambio importante en la última década es que el financiamiento de la investigación dejó de ser apoyada con fondos propios del sector académico. Ahora existe mayor aporte del gobierno.

Cuadro No. 5. Gastos en ACT e I+D según fuente de financiamiento (en miles de dólares).

	20	008	20	009
Fuente de financiamiento	Gasto ACT (En miles de dólares)	Gasto I +D (En miles de dólares)	Gasto ACT (En miles de dólares)	Gasto I +D (En miles de dólares)
Recursos propios	\$ 118,900.18	\$ 10,750.99	\$ 117,126.13	\$ 117,126.13
Empresa privada	\$ 1,992.46	\$ 164.29	\$ 342.53	\$ 110.93
Gobierno	\$ 69,021.33	\$ 12,009.89	\$ 72,443.05	\$ 110.93
Institución de Educación Superior	\$ 73.50	\$ 5.20	\$ 33.50	\$ 5.20
Organización no gubernamental	\$ 48.36	\$ 32.36	\$ 19.80	\$ 19.80
Extranjero	\$ 2,932.65	\$ 1,087.59	\$ 3,656.07	\$ 1,838.72
TOTAL (1+2+3+4+5+6)	\$ 192,968.47	\$ 24,050.31	\$ 193,621.09	\$ 16,007.70

Gráfico No. 8. Gastos en ACT según fuente de financiamiento, 2009.

Recursos propios

0.12%
0.03%

11.49%
23.12%

0.69%

Gobierno

Institución de educación superior

Organización no

Extranjero

gubernamental

Gráfico No. 9. Gastos en I+D según fuente de financiamiento.

2.4 Gastos en ACT e I+D según área científica y tecnológica.

64.55%

La mayor inversión en ACT por área científica y tecnológica, (Cuadro No.6), es en Ciencias Sociales con un 36.13%, el área de Ingeniería y Tecnología con un 19.67%, las Ciencias Naturales y Exactas con un 16.84%%, las Ciencias Médicas con un 15.37%, el área de Humanidades con un 8.38% y el área de Ciencias Agrícolas con un 3.61% (Gráfico No.10). Mientras que la mayor inversión en I+D por área científica y tecnológica, (Gráfico No.11), es en el área de Ciencias Sociales con un 31.35%, en el área de Ciencias Naturales y Exactas con 29.04%, en el área de Ingeniería y Tecnología con un 10.01%, el área de Humanidades 9.44%, el área de Ciencias Médicas con un 15.23% y el área de Ciencias Agrícolas con un 4.94%.

 Los datos muestran que los mayores gastos en ACT e I+D se dan en las áreas de Ciencias Sociales.

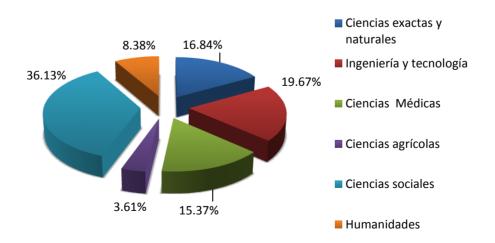
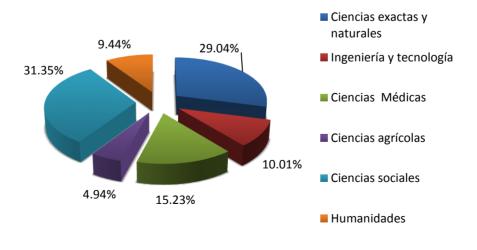



Gráfico No. 10. Gastos en ACT según área científica y tecnológica, 2009.

Cuadro No. 6. Gastos en ACT e I+D según área científica y tecnológica, en miles de dólares Americanos.

	20	08	2009		
Área científica y tecnológica	Gasto ACT (En miles de dolares)	Gasto I +D (En miles de dolares) \$4,741.81	Gasto ACT (En miles de dolares)	Gasto I +D (En miles de dolares)	
Ciencias Exactas y Naturales	\$36,143.53	, ,,	\$32,601.82	\$4,648.73	
Ingeniería y Tecnología	\$32,615.40	\$2,537.37	\$38,081.85	\$1,601.62	
Ciencias Médicas	\$27,479.90	\$2,876.85	\$29,761.87	\$2,438.48	
Ciencias Agrícolas	\$7,975.59	\$669.63	\$6,994.85	\$790.09	
Ciencias Sociales	\$60,027.41	\$8,554.80	\$69,958.98	\$5,017.84	
Humanidades	\$24,839.22	\$4,394.77	\$16,221.71	\$1,510.92	
TOTAL (1+2+3+4+5+6)	\$189,081.05	\$23,775.24	\$193,621.09	\$16,007.69	

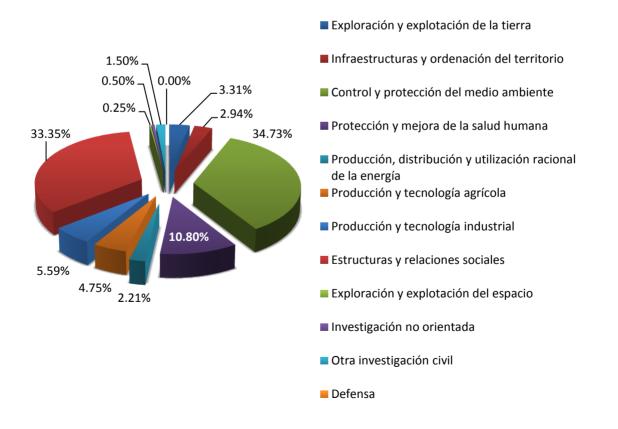
Gráfico No. 11. Gastos en I+D según área científica y tecnológica, 2009.

2.5 Gastos en ACT e I+D según objetivo socioeconómico.

La mayor inversión en ACT por objetivo socioeconómico, (Cuadro No. 7), es en Estructuras y relaciones sociales con un 39.05%, Control y protección del medio ambiente con un 18.79%, Producción y tecnología industrial 14.95%, Protección y mejora de la salud humana con un 14.23% (Gráfico No. 13).

La mayor inversión en I+D por objetivo socioeconómico, (Cuadro No. 7), es en Estructuras y relaciones sociales con un 33.35%, Control y protección del medio ambiente con un 34.73% y Protección y mejora de la salud humana con un 10.8% (Gráfico No. 14).

Se concluye que el objetivo socioeconómico de la ACT e I+D en el país no ha cambiado desde hace 11 años en relación a los temas sociales, medio ambiente y salud; sin embargo, la novedad para el año 2009 es la presencia del objetivo de Producción y Tecnología Industrial que nos indica un mayor enfoque de la academia a establecer relaciones con el sector productivo del país.


Cuadro No. 7. Gastos en ACT e I+D según objetivo socioeconómico, en miles de dólares Americanos.

		20	80		2009			
Objetivo Socioeconómico	(E	asto ACT n miles de dolares)	(E	asto I +D n miles de dolares)	Gasto ACT (En miles de dolares)		Gasto I +D (En miles de dolares)	
Exploración y explotación de la tierra	\$	3,241.82	\$	532.07	\$	3,336.64	\$	529.39
Infraestructuras y ordenación del territorio	\$	3,096.69	\$	439.08	\$	4,576.38	\$	471.02
Control y protección del medio ambiente	\$	34,905.18	\$	5,431.15	\$	36,380.43	\$	5,559.72
Protección y mejora de la salud humana	\$	21,258.92	\$	2,078.75	\$	27,545.78	\$	1,728.93
Producción, distribución y utilización racional de la energía	\$	7,502.85	\$	365.73	\$	5,083.58	\$	353.63
Producción y tecnología agrícola	\$	7,513.48	\$	646.26	\$	6,774.90	\$	760.72
Producción y tecnología industrial	\$	32,509.02	\$	2,015.83	\$	28,937.00	\$	894.88
Estructuras y relaciones sociales	\$	57,717.84	\$	9,013.14	\$	75,607.79	\$	5,339.34
Exploración y explotación del espacio	\$	971.37	\$	18.07	\$	366.25	\$	39.62
Investigación no orientada	\$	18,032.80	\$	2,969.87	\$	1,673.48	\$	80.37
Otra investigación civil	\$	2,331.07	\$	184.60	\$	2,809.48	\$	240.05
Defensa	\$	0.00	\$	0.00	\$	0.00	\$	0.00
Total (1+2+3+4+5+6+7+8+9+10+11+12)	\$ 1	189,081.04	\$	23,694.56	\$	193,091.71	\$	15,997.67

Gráfico No. 12. Gastos en ACT según objetivo socioeconómico, 2009.

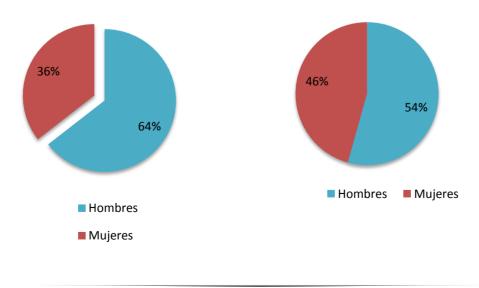
Gráfico No. 13. Gastos en I+D según objetivo socioeconómico, 2009.

CAPIT	ΓULO II
RECURSOS HUMANOS DEDICADOS A INVESTIGAC DESARI	

RECURSOS HUMANOS DEDICADOS A INVESTIGACION Y DESARROLLO

1. Personal Total.

El personal académico y administrativo que labora en las Instituciones de Educación Superior, según esta encuesta del 2009, es de 11,757 (Cuadro No. 1), de los cuales el 60.85% son hombres y el 39.15 % son mujeres; la relación Académico/Administrativo es de 1.79 (1.5 en el 2008 y 1.71 en el año 2007). Tanto en el sector académico como en el administrativo laboran más hombres que mujeres.

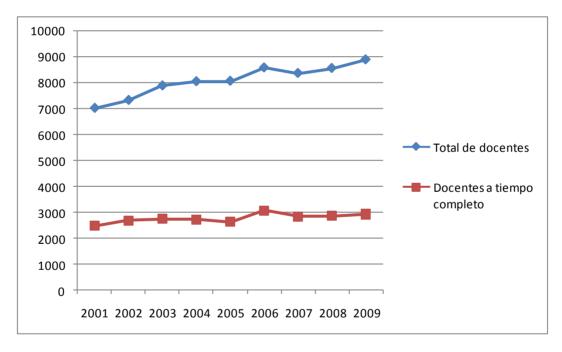

Según datos del MINED, el número de docentes para el 2009 es de 8,893 (Cuadro No. 2), de los cuales el 33.06% (2,940) son a tiempo completo (Gráfico No. 3). La planta docente ha permanecido relativamente constante del 2001 al 2009, el principal incremento ha sido en los profesores contratados a tiempo parcial y por horas clase. Y la distribución de hombres y mujeres en la planta docente de las IES es 64.74% y 35.26% respectivamente.

Cuadro No. 1. Personal Académico y Administrativo por sexo.

		2008			2009	
Tipo de personal	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales
Académico	4,600	2795	7633	4,861	2,677	7,538
Administrativo	2142	1863	4005	2,293	1,926	4,219
Personal Total (1+2)	6980	4658	11638	7,154	4,603	11,757

Grafico No. 1: Personal Académico.

Grafico No. 2: Personal Administrativo.


Cuadro No. 2. Número de docentes, Fuente: MINED.

		2001		2002		2003			2004			
Docentes	TC	Т	% TC	TC	Т	%TC	TC	Т	% TC	TC	Т	%TC
(MINED)	2485	7027	35.36	2699	7331	36.82	2758	7890	34.96	2728	8053	33.88

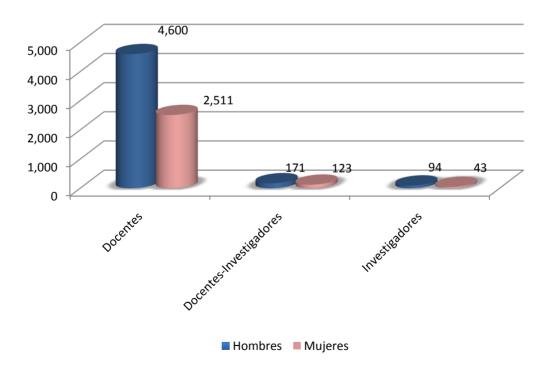
		2005		2006		2007			2008			
Docentes	TC	Т	% TC	TC	Т	%TC	TC	Т	% TC	TC	Т	%TC
(MINED)	2650	8070	32.84	3079	8583	35.87	2846	8370	34.00	2872	8562	33.54

		2009							
Docentes	TC	Т	% TC						
(MINED)	2,940	8,893	33.06						

Gráfico No. 3. Docentes totales (T) y a tiempo completo (TC).

Fuente: MINED.

2. Personal Académico según su labor.


Del total de personal académico obtenido en la encuesta (7,542), el 94% son docentes, el 4% son docentes -investigadores y el 2% son investigadores (Cuadro No.3). Es decir, únicamente el 6% (431 académicos) del personal realiza alguna labor de investigación (Gráfico No. 5). Según esta encuesta únicamente 137 personas dedican más del 80% de su tiempo a la labor de investigación. Al igual que la docencia, la investigación recae principalmente en docentes sin maestrías y doctorados.

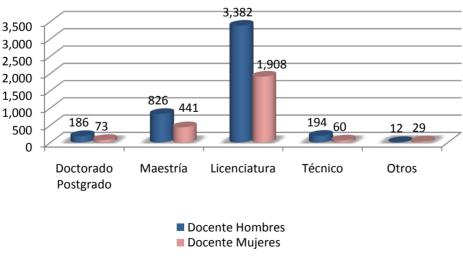
Una primera estrategia del país debería ser el tratar de mover a docentes con maestría y
doctorado hacia labores de investigación. Pero es claro que la labor actual del sector de
educación superior es mayoritariamente hacia la formación de profesionales lo que demanda a
casi la totalidad de sus académicos a esta labor.

Cuadro No. 3. Personal Académico por labor y sexo.

Personal										
académico		200	8		2009					
	Hombres	Mujeres	Totales	%	Hombres	Mujeres	Totales	%		
Docentes	4490	2601	7091	93.30	4,600	2,511	7,111	94		
Docentes-										
Investigadores	225	143	368	4.84	171	123	294	4		
Investigadores	101	40	141	1.86	94	43	137	2		
Personal	4816	2784	7600	100.00	4,865	2,677	7,542	100		
Total (1+2+3)										

Gráfico No. 4. Personal Académico por sexo.

3. Personal Académico según nivel de formación y sexo.

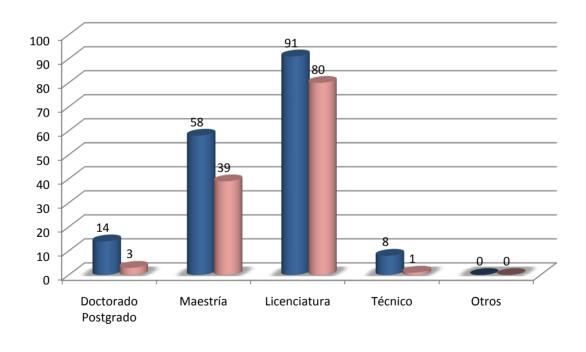

3.1 Personal Docente.

Los datos del cuadro No 4 muestran que la labor docente la desempeñan en un 78.54% profesores con estudios en el nivel de licenciatura, técnico y otros. El cuerpo docente a nivel de maestría y doctorado (1,526) sigue siendo bajo en el país. (Gráfico No.6). De acuerdo a los docentes con nivel de doctorado (259) y tomando como referencia 35 instituciones de educación superior, se obtiene un promedio de 7.4 doctores por institución. Según datos del MINED para el 2008, de un total de 8562 docentes solo el 1.62% (139) poseen doctorado, 19.66% poseen maestría (1683) y el resto (6740) poseen grados de licenciatura, ingeniería, técnico y otros.

Cuadro No. 4. Personal docente según nivel de formación y sexo.

Nivel de		2008			2009						
Formación		Docente									
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales					
Doctorado Postgrado	165	64	229	186	73	259					
Maestría	755	411	1166	826	441	1,267					
Licenciatura, Arquitectura, Ingeniería, Doctorado Universitario	3364	1926	5290	3,382	1,908	5,290					
Técnico	215	197	412	194	60	254					
Otros	8	11	19	12	29	41					
Personal Total (1+2+3+4+5)	4507	2609	7116	4,600	2,511	7,111					

Gráfico No. 5. Personal docente por nivel de formación y sexo.


Nota. En Licenciatura se incluyen: licenciatura, ingeniería, arquitectura y doctorado universitario.

3.2 Personal Docente-Investigador.

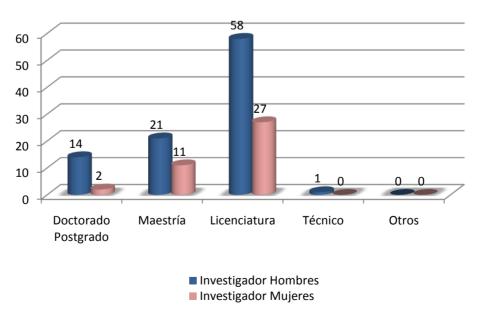
Cuadro No. 5. Personal docente-investigador según nivel de formación y sexo.

Nivel de		2008			2009					
Formación	Docente-Investigador									
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales				
Doctorado	25	6	31	14	3	17				
Postgrado										
Maestría	69	27	96	58	39	97				
Licenciatura, Arquitectura, Ingeniería, Doctorado Universitario	121	104	225	91	80	171				
Técnico	6	2	8	8	1	9				
Otros	0	1	1	0	0	0				
Personal Total (1+2+3+4+5)	221	140	361	171	123	294				

Gráfico No. 6. Personal Docente-Investigador por nivel de formación y sexo.

■ Docente- Investigador Hombres ■ Docente- Investigador Mujeres

Nota. En Licenciatura se incluyen: licenciatura, ingeniería, arquitectura y doctorado universitario.

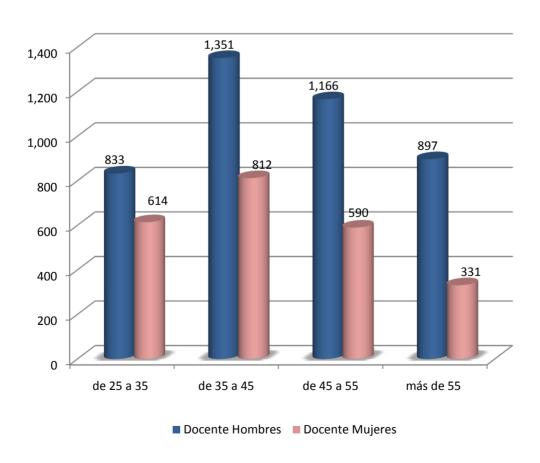

3.3 Personal Investigador.

En este documento se considera investigador a aquella persona que dedica más del 80% de su tiempo como investigador. Los datos para el 2009 muestran que solo el 35.82% (48) de los investigadores tienen grados de maestría y doctorado, por lo que la investigación sigue dependiendo de personal con grado de licenciatura.

Cuadro No. 6. Personal Investigador según nivel de formación y sexo.

Nivel de		2008			2009	
Formación			Investi	gador		
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales
Doctorado	14	2	16	14	2	16
Postgrado						
Maestría	27	13	40	21	11	32
Licenciatura,	59	22	81	58	27	85
Arquitectura,						
Ingeniería,						
Doctorado						
Universitario						
Técnico	1	0	1	1	0	1
Otros	0	0	0	0	0	0
Personal Total	101	37	138	94	40	134
(1+2+3+4+5)						

Gráfico No. 7. Personal Investigador por nivel de formación y sexo.

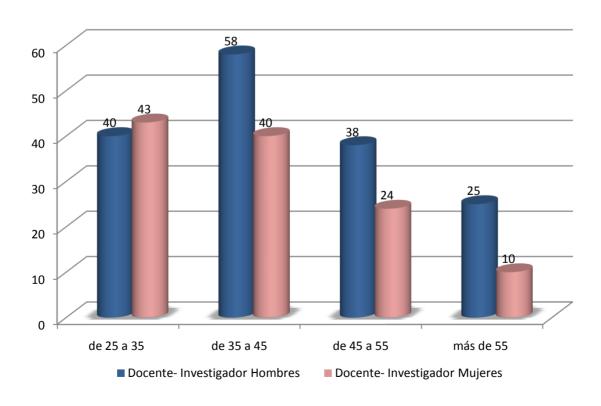

Nota: En Licenciatura se incluyen: licenciatura, ingeniería, arquitectura y doctorado universitario.

- 4. Personal Académico según grupos de edad y sexo.
- 4.1 Personal Docente.

Cuadro No. 7. Docentes por Grupos de Edad.

		2008		2009						
Grupos de edad	Docente									
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales				
de 25 a 35	884	747	1631	833	614	1,447				
de 35 a 45	1292	767	2059	1,351	812	2,163				
de 45 a 55	1118	607	1725	1,166	590	1,756				
más de 55	843	372	1215	897	331	1,228				
Personal Total	4137	2493	6630	4,247	2,347	6,594				

Gráfico No. 8. Personal docente por grupo de edad, 2009.

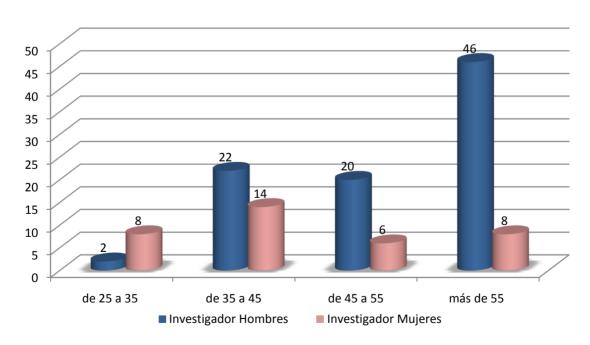


4.2 Personal Docente-Investigador.

Cuadro No. 8. Docentes-Investigador por Grupos de Edad.

	2	2008		2009					
Grupos de edad	Docente-Investigador								
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales			
de 25 a 35	49	58	107	40	43	83			
de 35 a 45	80	52	132	58	40	98			
de 45 a 55	54	28	82	38	24	62			
más de 55	34	7	41	25	10	35			
Personal Total	217	145	362	161	117	278			

Gráfico No. 9. Personal docente-Investigador por Grupo de Edad.



4.3 Personal Investigador.

Cuadro No. 9. Investigadores por Grupos de Edad.

	2008			2009				
Grupos de edad	Investigador							
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales		
de 25 a 35	6	7	13	2	8	10		
de 35 a 45	24	14	38	22	14	36		
de 45 a 55	21	7	28	20	6	26		
más de 55	46	8	54	46	8	54		
Personal Total	97	36	133	90	36	126		

Gráfico No. 10. Personal Investigador por Grupo de Edad.

5. Personal empleado en I+D, según su ocupación.

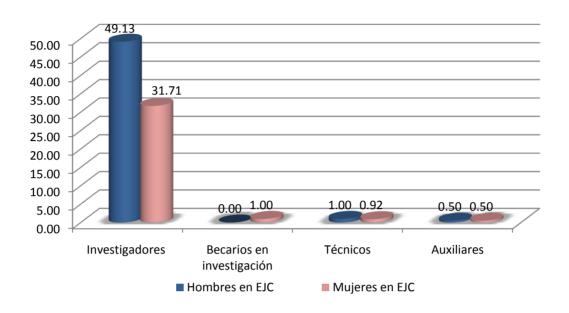
5.1 Personal Total.

Cuadro No. 10. Personal empleado en I+D según ocupación

	2008			2009			
Ocupación	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales	
Investigadores	186	101	287	132	96	228	
Becarios en investigación	8	6	14	8	6	14	
Técnicos	15	19	34	16	14	30	
Auxiliares	15	18	33	11	8	19	
Personal Total (1+2+3+4)	224	144	368	167	124	291	

5.2 Personal en I+D en equivalencia a Jornada completa (EJC).

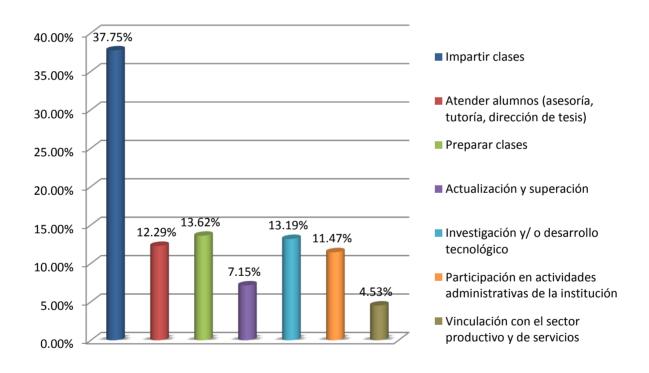
La equivalencia a jornada completa (EJC) se calcula considerando para cada persona únicamente la proporción de su tiempo (o su jornada) que dedica a I+D (o ACT, cuando corresponda).


Cuadro No. 11. Personal en equivalencia a Jornada completa (EJC).

		2008		2009			
Ocupación	Hombres en EJC	Mujeres en EJC	Totales	Hombres en EJC	Mujeres en EJC	Totales	
Investigadores	32.4	25.36	57.76	49.13	31.71	80.84	
Becarios en investigación	0	1	1	0.00	1.00	1.00	
Técnicos	1.2	0.79	1.99	1.00	0.92	1.92	
Auxiliares	0.6	1.19	1.79	0.50	0.50	1.00	
Personal Total (1+2+3+4)	34.2	28.34	62.54	50.63	34.13	84.76	

6. Tiempo medio de dedicación del personal docente.

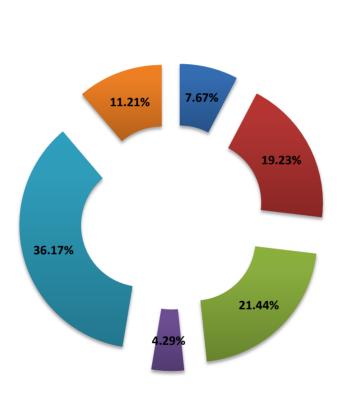
La distribución del tiempo medio de dedicación del personal docente se presenta en el cuadro No. 12. Se observa que el país tiene un personal docente que dedica muy poco tiempo a actualizarse en su campo de estudio y, con muy poca vinculación con el sector productivo y de servicios. Esto es razonable ya que sus labores principales son la docencia y participación en tareas administrativas de la institución.


Gráfico No. 11. Personal I+D en Equivalencia de Jornada Completa.

Cuadro No. 12. Tiempo medio de dedicación del personal docente.

Actividad	Horas por semana (2007)	%	Horas por semana (2008)	%	Horas por semana (2009)	%
Impartir clases	10.67	25.20	11.91	30.58	15.79	37.75
Atender alumnos (asesoría, tutoría, dirección de tesis)	7.78	17.29	5.87	15.07	5.14	12.29
Preparar clases	7.18	15.89	6.30	16.19	5.69	13.62
Actualización y superación	4.23	9.38	2.97	7.64	2.99	7.15
Investigación y/ o desarrollo tecnológico	6.56	14.67	4.70	12.06	5.52	13.19
Participación en actividades administrativas de la institución	5.94	12.92	5.45	14.00	4.80	11.47
Vinculación con el sector productivo y de servicios	2.18	4.65	1.74	4.48	1.89	4.53
TOTAL	44.54	100.00	38.95	100.00	41.82	100.00

Gráfico No. 12. Distribución del tiempo para un docente a tiempo completo, 2009.


7. Investigadores y Docentes por área Científica y Tecnológica.

En el cuadro No. 13 se presenta la distribución de los investigadores y docentes por área científica y tecnológica.

Cuadro No. 13. Investigadores y Docentes por área Científica y Tecnológica.

		2008		2009			
Área Científica y Tecnológica	TOTAL			TOTAL			
	Hombres	Mujeres	Totales	Hombres	Mujeres	Totales	
Ciencias exactas y naturales (matemática e informática, ciencias físicas, ciencias químicas, ciencias de la tierra, ciencias biológicas) Docentes	462	223	685	381	186	567	
Docente- Investigador	417	196	613	352	173	525	
Investigadores	27 18	14 13	41 31	12 17	3 10	15 27	
2. Ingeniería y tecnología (ingeniería civil, ingeniería eléctrica, otras ciencias de la ingeniería)	1044	326	1370	1,091	331	1,422	
Docentes	981	306	1287	1,027	303	1,330	
Docente- Investigador	61	20	81	61	27	88	
Investigadores	2	0	2	3	1	4	
3. Ciencias Médicas (medicina fundamental, medicina clínica, ciencias de la salud)	792	985	1777	748	838	1,586	
Docentes	772	947	1719	694	742	1,436	
Docente- Investigador	16	33	49	51	91	142	
Investigadores	4	5	9	3	5	8	
4. Ciencias agrícolas (agricultura, silvicultura, pesca y ciencias afines, medicina veterinaria)	199	72	271	253	64	317	
Docentes Docente- Investigador	148 8	58 7	206 15	203 7	52 5	255 12	
Investigadores	43	7	50	43	7	50	
5. Ciencias sociales (psicología, economía, ciencias de la educación, otras ciencias sociales)	1721	804	2525	1,783	892	2,675	
Docentes	1605	746	2351	1,683	823	2,506	
Docente- Investigador	86	47	133	81	59	140	
Investigadores	30	11	41	19	10	29	
6. Humanidades (historia, arqueología, lengua y literatura, filosofía, historia del arte, teología, religión, arte, pintura, etc) Docentes	483 450	261 248	744 698	532 496	297 278	829 774	
Docente- Investigador Investigadores	31 2	11 2	42 4	31 5	16 3	47 8	
TOTAL (1+2+3+4+5+6)	4701	2671	7372	4,788	2,608	7,396	

Gráfico No. 13. Investigadores y Docentes por área Científica y Tecnológica.

- 1. Ciencias exactas y naturales (matemática e informática, ciencias físicas, ciencias químicas, ciencias de la tierra, ciencias biológicas)
- 2. Ingeniería y tecnología (ingeniería civil, ingeniería eléctrica, otras ciencias de la ingeniería)
- 3. Ciencias Médicas (medicina fundamental, medicina clínica, ciencias de la salud)
- 4. Ciencias agrícolas (agricultura, silvicultura, pesca y ciencias afines, medicina veterinaria)
- 5. Ciencias sociales (psicología, economía, ciencias de la educación, otras ciencias sociales)
- 6. Humanidades (historia, arqueología, lengua y literatura, filosofía, historia del arte, teología, religión, arte, pintura, etc)

PROYECTOS DE INVESTIGACION Y DESARROLLO.

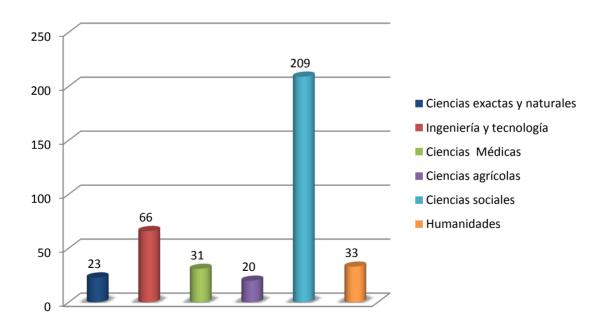
1. Tipo de Proyectos realizados⁵.

El tipo de proyectos ejecutados por las Instituciones de Educación Superior se concentran en investigación aplicada (38.48%) y básica (37.70%) y en consultorías (12.57%).

- Se observa que el 76.18%% de los proyectos ejecutados por las IES son en investigación básica y aplicada.
- Las principales áreas de ciencia y tecnología en las que se desarrollan estos proyectos son: ciencias sociales (54.71%), ingeniería y tecnología (17.28%), humanidades (8.64%) y ciencias médicas (8.12%).

Cuadro No. 1. Tipo de proyectos realizados por las IES.

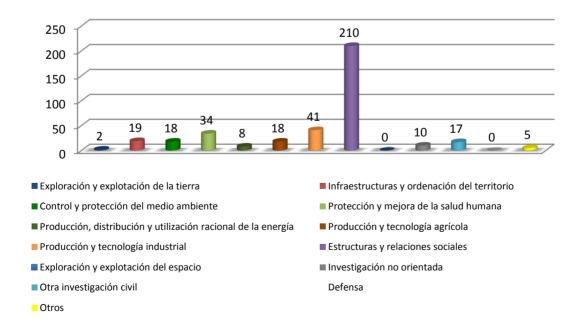
Tipo de proyecto	Número de proyectos (2008)	Número de proyectos (2009)	Proyectos en % (2009)	
Consultoría	16	48	12.57	
Investigación Básica	96	144	37.70	
Investigación Aplicada	159	147	38.48	
Desarrollo Experimental de productos	21	19	4.97	
Desarrollo Experimental de procesos	17	21	5.50	
Cursos de Entrenamiento (Educación continúa)	37	0	0.00	
Ensayos y pruebas	1	3	0.79	
Total (1+2+3+4+5+6+7)	347	382	100.00	


_

⁵ En este capítulo los proyectos del año 2008 corresponden solo a Universidades. Los proyectos del año 2009 incluyen a todas las IES.

Gráfico No. 1A. Tipo de proyectos realizados y áreas de ciencia y tecnología, 2009.

Gráfico No. 1B. Tipo de proyectos realizados y áreas de ciencia y tecnología, 2009.


2. Objetivo socioeconómico de los proyectos.

Los objetivos socioeconómicos de los proyectos son principalmente en: estructuras y relaciones sociales (54.97%), producción y tecnología industrial (10.73%) y protección y mejora de la salud humana (8.90%). Se observa desde el año 2007 un incremento de proyectos orientados a la producción y tecnología industrial.

Cuadro No 2. Objetivo socio económico de los proyectos.

Objetivo Socio económico	Número de	Número de
	proyectos (2008)	proyectos (2009)
Exploración y explotación de la tierra	10	2
Infraestructuras y ordenación del territorio	21	19
Control y protección del medio ambiente	16	18
Protección y mejora de la salud humana	40	34
Producción, distribución y utilización racional de la energía	4	8
Producción y tecnología agrícola	21	18
Producción y tecnología industrial	41	41
Estructuras y relaciones sociales	167	210
Exploración y explotación del espacio	4	0
Investigación no orientada	8	10
Otra investigación civil	14	17
Defensa	1	0
Otros	0	5
Total (1+2+3+4+5+6+7+8+9+10+11+12)	347	382

Gráfico No. 2. Objetivo socio económico de los proyectos.

3. Tiempo de duración de los proyectos.

de 12 a 18

de 18 a 24

más de 24

Total

Los proyectos son de corta duración de tal forma que el 64.14% de ellos tiene una duración de menos de 1 año. Se encontraron 137 (35.86%) proyectos con duración de de más de un año lo que indica que la investigación tiende a ser un poco mas sostenida y de más largo plazo en las universidades.

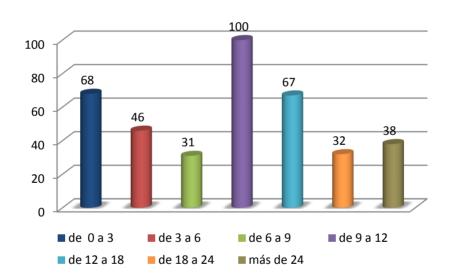
Número de proyectos Número de proyectos Meses (2008)(2009)de 0 a 3 31 68 de 3 a 6 65 46 de 6 a 9 45 31 de 9 a 12 121 100

32

24

29

347

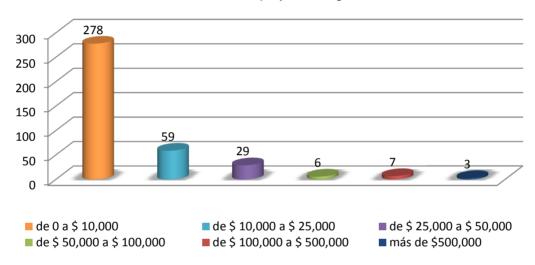

67

32

38

382

Cuadro No. 3. Tiempo de duración de los proyectos.

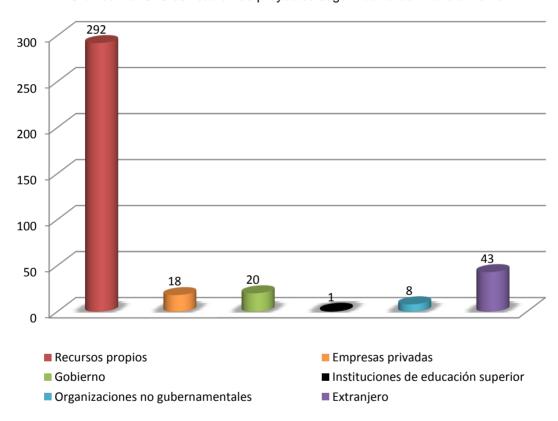

4. Clasificación de proyectos según monto en Dólares.

El 72.77% de los proyectos han tenido un financiamiento menor a \$10,000, entre 10,000 y 50,000 se encuentran el 23% y arriba de 50,000 dólares se encuentran 16 (4.19%) proyectos. Si bien se ha incrementado el número de proyectos los montos ejecutados siguen siendo bajos, lo que indica que son proyectos de poco impacto para el desarrollo de la I+D.

Cuadro No. 4. Clasificación de proyectos según monto en dólares.

Monto en dólares	Número de proyectos (2008)	Número de proyectos (2009)
de 0 a \$ 10,000	256	278
de \$ 10,000 a \$ 25,000	54	59
de \$ 25,000 a \$ 50,000	13	29
de \$ 50,000 a \$ 100,000	9	6
de \$ 100,000 a \$ 500,000	11	7
más de \$500,000	4	3
Total	347	382

Gráfico No. 4. Clasificación de proyectos según monto en dólares.


5. Clasificación de proyectos según fuente de financiamiento.

Como ha sido en los últimos 10 años la mayoría de proyectos ejecutados por las universidades lo realizan con fondos propios (76.44%) y del extranjero (11.26%). El aporte de proyectos financiados por la empresa privada (4.71%) y el gobierno (3.24%) sigue siendo bajo.

Cuadro No. 5. Clasificación de proyectos según fuente de financiamiento.

Fuente de financiamiento	Número de proyectos (2008)	Número de proyectos (2009)
Recursos propios	275	292
Empresas privadas	14	18
Gobierno	12	20
Instituciones de Educación Superior	1	1
Organizaciones no gubernamentales	7	8
Extranjero	38	43
Total (1+2+3+4+5+6)	347	382

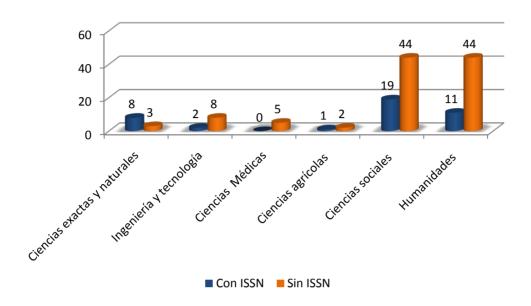
Gráfico No. 5. Clasificación de proyectos según fuente de financiamiento.

PRODUCCION CIENTIFICA Y TECNOLOGICA.

Se presenta la producción literaria científica nacional, en concepto de publicaciones periódicas y libros, en las IES para el año 2009. Esta información se clasifica en las diferentes áreas de información científica y tecnológica.

Las publicaciones se contabilizan de acuerdo al registro ISSN e ISBN. El ISSN (Internacional Standard Serial Number/Número Internacional Normalizado de publicaciones seriadas), identifica las publicaciones seriadas y es opcional ya que el editor no está legalmente obligado a utilizarlo. El ISBN (Internacional Standard Book Number/Número Internacional Normalizado de Libros), es obligatorio si el libro en cuestión está dentro del ámbito de aplicabilidad del ISBN.

1. Publicaciones periódicas por áreas científicas y tecnológicas.


El 27.89 % de las publicaciones periódicas tiene registro de ISSN, de las cuales el 73.17% son publicaciones de las áreas de Humanidades y de Ciencias Sociales.

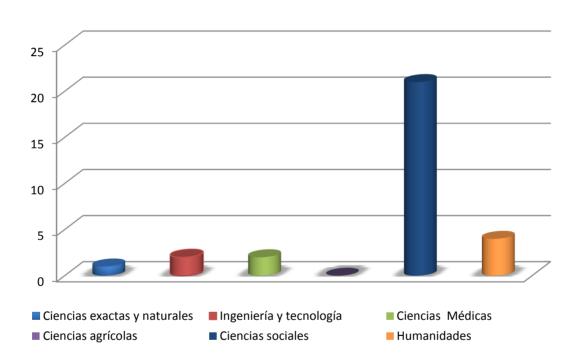
■ La mayor deficiencia en el registro del ISSN se produce en las áreas de ciencias sociales y humanidades, en donde, el 74.58% (88) de las publicaciones no tienen este tipo de registros.

Cuadro No. 1. Número de Revistas y/o Boletines Impresos y/o electrónicos.

	2008			2009		
Área científica y tecnológica	Número de revistas Totales y/o boletines Impresos y/ o electrónicos Con ISSN Sin ISSN		Número o y/o bo Impres electro Con ISSN	Totales		
Ciencias Exactas y Naturales	7	5	12	8	3	11
Ingeniería y Tecnología	3	8	11	2	8	10
Ciencias Médicas	4	7	11	0	5	5
Ciencias Agrícolas	1	6	7	1	2	3
Ciencias Sociales	41	35	76	19	44	63
Humanidades	22	6	28	11	44	55
TOTAL (1+2+3+4+5+6)	78	67	145	41	106	147

Gráfico No. 1. Número de Revistas y/o Boletines Impresos y/o electrónicos con ISSN y sin ISSN por área Científica y Tecnológica.

2. Libros por áreas científicas y tecnológicas.


El 40.72% de los libros tienen registro de ISBN, de las cuales el 33.82% son publicaciones del área de Ciencias Sociales y el 29.41% son publicaciones del área de Humanidades. En el año 2008, el 59.28% de los libros escritos no fueron registrados con ISBN.


De los libros que no cuentan con registro ISBN, el 56.27% (56 de 99) son libros escritos en el área de ingeniería y tecnología. Para el año 2009, las IES solo reportaron la publicación de 30 libros sin especificar si tienen o no registros ISBN. De estos libros 25 son de las áreas sociales y humanísticas.

Cuadro No. 2. Número de Libros para el año 2008.

Área científica y tecnológica	Número de libros		
	Con ISBN	Sin ISBN	Totales
Ciencias Exactas y Naturales	12	1	13
Ingeniería y Tecnología	9	56	65
Ciencias Médicas	4	7	11
Ciencias Agrícolas	0	1	1
Ciencias Sociales	23	32	55
Humanidades	20	2	22
TOTAL (1+2+3+4+5+6)	68	99	167

Gráfico No. 3. Número de Libros por área Científica y Tecnológica, 2008.

1. Usos y difusión de TICs.

El grado de implementación de las TICs en las Instituciones de Educación Superior es bastante amplio como se observa en el cuadro No.1, queda pendiente el extranet que consistiría en que los estudiantes podrían gestionar sus demandas y servicios desde fuera del campus a través de internet.

Cuadro No. 1. Uso y Difusión de las principales Herramientas de TICs.

Tecnologías de Información y Comunicación	2007	2008	2009
Intranet	60%	62.86%	72.97%
Extranet	48%	57.14%	54.05%
Internet	100%	100%	100%
Página Web	100%	97.14%	100%
Internet Inalámbrico en el campus	84%	80%	86.49%

• El Internet, el email y la página Web son los recursos más utilizados de estas nuevas tecnologías con el 100%. La conectividad interna de las instituciones se encuentra en un 72.97% y el 86.49% de las instituciones dispone de Internet inalámbrico en su campus. El 54.05% de las instituciones cuentan con un sistema informático al que se puede acceder desde lugares fuera de la institución.

Gráfico No. 1ª. Disponibilidad de TICs en las IES, 2008.

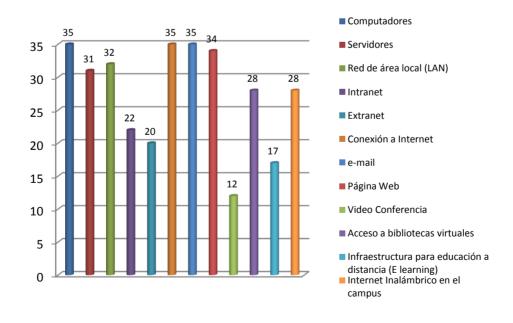
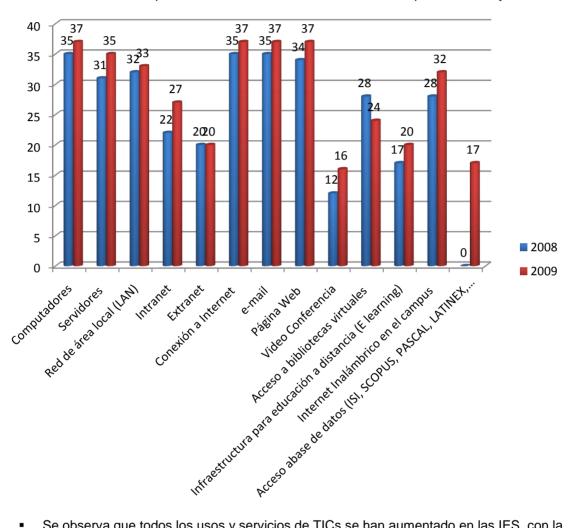
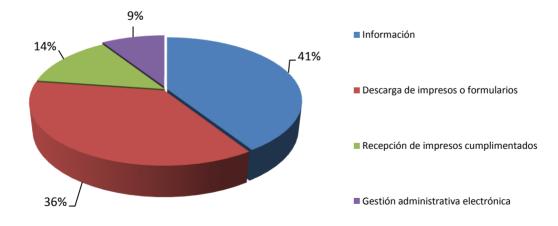



Gráfico No. 1B. Disponibilidad de TICs en las IES. Cuadro comparativo 2008 y 2009.

 Se observa que todos los usos y servicios de TICs se han aumentado en las IES, con la excepción del acceso a bases de datos virtuales que bajó del 2008 al 2009.


2. Usos y Aplicaciones de TICs.

El grado de incorporación de TICs se comprueba con la información referida al uso que se hace de Internet. (Cuadro No. 2).

Cuadro No. 2. Usos y Aplicaciones de Internet, 2008.

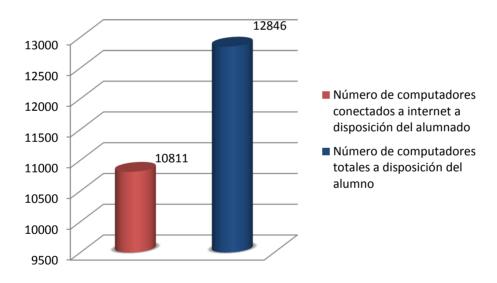
Tecnologías de Información y Comunicación	2008
e-mail	100%
Video Conferencia	34.29%
Acceso a bibliotecas virtuales	80%
Infraestructura para educación a distancia	49%
Información	41%
Descarga de impresos o formularios	36%
Recepción de impresos cumplimentados	14%
Gestión administrativa y/ o académica electrónica	9%

Gráfico No. 2ª. Servicios en línea ofrecidos por las IES, 2008.



Gráfico No. 2B. Servicios en línea ofrecidos por las IES, 2009.

■ El Internet es utilizado para envió y recepción de correo electrónico, con el 100%. El 80% de las instituciones utilizan el Internet para búsqueda de información a bibliotecas virtuales. En menor proporción, para el año 2009, está el uso de Internet para descarga de impresos o formulario con el 13%% y Gestión administrativa y/o académica electrónica con el 25%. Solo el 43.24% utiliza Internet para Video conferencia. En general, se podría concluir que las TICs están bien difundidas en las instituciones de educación superior con únicamente tres limitantes: (1) El acceso externo a la información y gestión administrativa de las instituciones desde internet; (2) Poco uso de la video conferencia como recurso de educación a distancia y; (3) Falta cobertura del uso de las TICs en los diferentes campus.

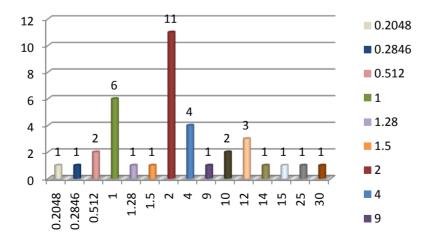

3. Computadoras a disposición del alumnado.

El número de computadoras totales a disposición del alumnado por cada 100 alumnos es de 8.1 computadoras y el número de computadoras conectadas a Internet a disposición del alumnado por cada 100 alumnos es de 6.78 computadoras. Del total de computadoras a disposición del alumno el 83.78% dispone de acceso a Internet; sin embargo, sigue siendo bajo el número de computadoras por cada 100 estudiantes. Según datos del MINED para el año 2008, los estudiantes por computadora son 11.56 y los estudiantes por computadora conectada al internet son 12.59. Esto datos obtenidas por la encuesta son 12.36 y 14.75 respectivamente.

Cuadro No. 3. Computadoras a disposición del alumnado.

Computadoras a disposición del alumnado	2007	2008	2009
Número de computadores conectados a Internet a disposición del alumnado	6,545	9,271	10,811
Número de computadores totales a disposición del alumno	7,533	11,066	12,846
Instituciones encuestadas	25	35	37

Grafico No. 3. Computadoras a disposición del alumnado, 2009.


4. Ancho de banda contratado para comunicación electrónica (MB).

Para el año 2009, se pueden distinguir 3 grupos de IES de acuerdo al ancho de banda contratado: el primer grupo, lo forma 27 IES con ancho de banda debajo de 4 Mb; el segundo grupo, está entre 9 y 12 Mb, y son 5 IES y; el tercer grupo, tienen contratado entre 14 y 30 Mb y son 4 IES.

Cuadro No. 4: Ancho de banda contratado en Mb.

Ancho de banda en Mb	Número de Instituciones	2007	Número de Instituciones	2008	Número de Instituciones	2009
0.2048	0	0	0	0	1	2.70%
0.2846	0	0	0	0	1	2.70%
0.256	1	4.00%	1	2.86%	0	0%
0.512	2	8.00%	2	5.71%	2	5.41%
1	8	32.00%	11	31.43%	6	16.22%
1.28	0	0	0	0	1	2.70%
1.5	0	0	0	0	1	2.70%
2	5	20.00%	12	34.29%	11	29.73%
3	1	4.00%	0	0.00	0	0
4	2	8.00%	3	8.57%	4	10.81%
4.5	1	4.00%	0	0.00	0	0
5	1	4.00%	0	0.00	0	0
6	1	4.00%	1	2.86%	0	0
8	2	8.00%	0	0.00	0	0
9	0	0	0	0	1	2.70%
10	0	0	3	8.57%	2	5.41%
12	0	0	0	0	3	8.11%
13	0	0	0	0	0	0
14	1	4.00%	1	2.86%	1	2.70%
15	0	0	0	0	1	2.70%
16	0	0.00	1	2.86%	0	0
25	0	0	0	0	1	2.70%
30	0	0	0	0	1	2.70%
Total	25	100.00%	35	100.00%	37	100.00%

Gráfico No. 4. Ancho de banda (en Mb) contratado por las IES, 2009.

ANEXO

INSTITUCIONES DE EDUCACION SUPERIOR

UNIVERSIDAD ESTATAL AUTORIZADA

1. Universidad de El Salvador (UES).

UNIVERSIDADES PRIVADAS AUTORIZADAS

- 1. Universidad Albert Einstein (UAE).
- 2. Universidad Autónoma de Santa Ana (UNASA).
- 3. Universidad Capitán General Gerardo Barrios (UGB).
- 4. Universidad Católica de Occidente (UNICO).
- 5. Universidad Centroamericana José Simeón Cañas (UCA).
- 6. Universidad Cristiana de Las Asambleas de Dios (UCAD).
- 7. Universidad de Oriente (UNIVO).
- 8. Universidad de Sonsonate (USO).
- 9. Universidad Don Bosco (UDB).
- 10. Universidad Dr. Andrés Bello (UNAB).
- 11. Universidad Dr. José Matías Delgado (UJMD).
- 12. Universidad Evangélica de El Salvador (UEES).
- 13. Universidad Francisco Gavidia (UFG).
- 14. Universidad Luterana Salvadoreña (ULS).
- 15. Universidad Modular Abierta (UMA).
- 16. Universidad Monseñor Oscar Arnulfo Romero (UMOAR).
- 17. Universidad Nueva San Salvador (UNSSA).
- 18. Universidad Panamericana (UPAN).
- 19. Universidad Pedagógica de El Salvador (UPED).
- 20. Universidad Politécnica de El Salvador (UPES).
- 21. Universidad Salvadoreña Alberto Masferrer (USAM).
- 22. Universidad Técnica Latinoamericana (UTLA).
- 23. Universidad Tecnológica de El Salvador (UTEC).

INSTITUTO ESPECIALIZADO ESTATAL AUTORIZADO

1. Instituto Especializado de Nivel Superior Escuela Militar "Capitán General Gerardo Barrios".

INSTITUTOS ESPECIALIZADOS PRIVADOS AUTORIZADOS

- 1. Instituto Especializado de Educación Superior El Espíritu Santo (IEESES).
- 2. Instituto Especializado de Comunicaciones Mónica Herrera.
- 3. Instituto Especializado Escuela Superior de Economía y Negocios (ESEN).
- 4. Instituto Superior de Economía y Administración de Empresas (ISEADE).
- 5. Instituto Tecnológico Centroamericano (ITCA).

INSTITUTOS TECNOLOGICOS ESTATALES AUTORIZADOS

- 1. Escuela Nacional de Agricultura Roberto Quiñonez (ENA).
- 2. Instituto Tecnológico de Chalatenango (ITCHA).
- 3. Instituto Tecnológico de Sonsonate (ITSO).
- 4. Instituto Tecnológico de Usulután (ITU).

INSTITUTOS TECNOLOGICOS PRIVADOS AUTORIZADOS

- 1. Instituto Tecnológico Americano de Educación Superior (ITAE).
- 2. Instituto Tecnológico de Optometría (ITOP).
- 3. Instituto Tecnológico de Profesionales de la Salud de El Salvador (IEPROES).
- 4. Instituto Tecnológico Escuela Técnica para la Salud (ETPS).

DEFINICIONES BÁSICAS

Se presentan las definiciones de los conceptos utilizados, confeccionadas sobre la base del Manual de Frascati 2002 (OCDE) y de las definiciones propuestas por la UNESCO.

1. Actividades Científicas y Técnicas (ACT).

Las actividades científicas y tecnológicas comprenden las actividades sistemáticas estrechamente relacionadas con la producción, promoción, difusión y aplicación de los conocimientos científicos y técnicos en todos los campos de la ciencia y la tecnología. Incluyen actividades tales como la investigación científica y el desarrollo experimental (I+D), la enseñanza y la formación científica y técnica (EFCT) y los servicios científicos y técnicos (SCT).

2. Investigación y Desarrollo Experimental (I+D).

La investigación y el desarrollo experimental (I+D) comprenden el trabajo creativo llevado a cabo de forma sistemática para incrementar el volumen de los conocimientos humanos, culturales y sociales y el uso de esos conocimientos para derivar nuevas aplicaciones.

3. Servicios Científicos y Técnicos (SCT).

La definición de los SCT engloba las actividades relacionadas con la investigación y el desarrollo experimental que contribuyen a la producción, difusión y aplicación de conocimientos científicos y técnicos. A efectos de su uso en encuestas, la UNESCO ha dividido los SCT en nueve subclases que pueden resumirse como sigue: actividades de C-T de bibliotecas, etc.; actividades de C-T de museos, etc.; traducción, edición, etc., de literatura C-T; inventarios e informes (geológicos, hidrológicos, etc.); prospección; recogida de información de fenómenos socio-económicos; ensayos, normalización, control de calidad, etc.; actividades de asesoramiento a clientes, incluyendo servicios de asesoría agrícola e industrial; actividades de patentes y licencias a cargo de organismos públicos.

4. Sector Gobierno.

Este sector comprende todos los ministerios, oficinas y otros organismos que suministran, generalmente a título gratuito, servicios colectivos que no sería económico ni fácil suministrar de otro modo y que, además, administran los asuntos públicos y la política económica y social de la colectividad. (Las empresas públicas se incluyen en el sector de empresas); y las instituciones privadas sin fines de lucro controladas y financiadas principalmente por la administración.

5. Sector Empresas.

El sector de las empresas comprende todas las empresas, organismos e instituciones cuya actividad esencial consiste en la producción mercantil de bienes y servicios (exceptuando los de la enseñanza superior) para su venta al público, a un precio que corresponde al de la realidad económica; y las instituciones privadas sin fines de lucro que están esencialmente al servicio de dichas empresas.

6. Sector Educación Superior.

Este sector comprende todas las universidades y centros de nivel universitario, cualesquiera que sean el origen de sus recursos y su personalidad jurídica. Incluye también todos los institutos de investigación, estaciones experimentales y hospitales directamente controlados, administrados o asociados a centros de enseñanza superior.

7. Sector Organizaciones Privadas sin Fines de Lucro.

El campo cubierto por este sector comprende las instituciones privadas sin fines lucro, que están fuera del mercado y al servicio de las economías domésticas (es decir, del público); y los individuos privados y las economías domésticas.

8. Sector Extranjero.

Este sector comprende todas las instituciones e individuos situados fuera de las fronteras políticas de un país, a excepción de los vehículos, buques, aeronaves y satélites espaciales utilizados por instituciones nacionales, y de los terrenos de ensayo adquiridos por esas instituciones; y todas las organizaciones internacionales (excepto empresas), incluyendo sus instalaciones y actividades dentro de las fronteras de un país.

9. Objetivos Socio Económicos (OSE).

Para la distribución por objetivos socio económicos, se procura identificar la finalidad del programa o del proyecto de I+D.

9.1. Exploración y explotación de la Tierra.

Abarca la investigación cuyos objetivos estén relacionados con la exploración de la corteza y la cubierta Terrestre, los mares, los océanos y la atmósfera, y la investigación sobre su explotación. También incluye la investigación climática y meteorológica, la exploración polar (bajo diferente OSE, si es necesario) y la hidrológica. No incluye:

- La mejora de suelos y el uso del territorio (OSE 2).
- La investigación sobre la contaminación (OSE 3).
- La pesca (OSE 6).

9.2. Infraestructuras y ordenación del territorio.

Cubre la investigación sobre infraestructura y desarrollo territorial, incluyendo la investigación sobre construcción de edificios. En general, este OSE engloba toda la investigación relativa a la planificación general del suelo. Esto incluye la investigación en contra de los efectos dañinos en el urbanismo urbano y rural pero no la investigación de otros tipos de contaminación (OSE 3).

9.3. Control y protección del medio ambiente.

Comprende la investigación sobre el control de la contaminación destinada a la identificación y análisis de las fuentes de contaminación y sus causas, y todos los contaminantes, incluyendo su dispersión en el medio ambiente y los efectos sobre el hombre, sobre las especies vivas (fauna, flora, microorganismos) y la biosfera. Incluye el desarrollo de instalaciones de control para la medición de todo tipo de contaminantes. Lo mismo es válido para la eliminación y prevención de todo tipo de contaminantes en todos los tipos de ambientes.

9.4. Protección y mejora de la salud humana.

Incluye la investigación destinada a proteger, promocionar y restaurar la salud humana, interpretada en sentido amplio para incluir los aspectos sanitarios de la nutrición y de la higiene alimentaria. Cubre desde la medicina preventiva, incluyendo todos los aspectos de los tratamientos médicos y quirúrgicos, tanto para individuos como para grupos así como la asistencia hospitalaria y a domicilio, hasta la medicina social, la pediatría y la geriatría.

9.5. Producción, distribución y utilización racional de la energía.

Cubre la investigación sobre la producción, almacenamiento, transporte, distribución y uso racional de todas las formas de la energía. También incluye la investigación sobre los procesos diseñados para incrementar la eficacia de la producción y la distribución de energía, y el estudio de la conservación de la energía. No incluye:

- La investigación relacionada con prospecciones (OSE 1).
- La investigación de la propulsión de vehículos y motores (OSE 7).

9.6. Producción y tecnología agrícola.

Abarca toda investigación sobre la promoción de la agricultura, los bosques, la pesca y la producción de alimentos. Incluye: la investigación en fertilizantes químicos, biocidas, control biológico de las plagas y la mecanización de la agricultura; la investigación sobre el impacto de las actividades agrícolas y forestales en el medio ambiente; la investigación en el desarrollo de la productividad y la tecnología alimentaria. No incluye:

- La investigación para reducir la contaminación (OSE 3).
- La investigación para el desarrollo de las áreas rurales, el proyecto y la construcción de edificios, la mejora de instalaciones rurales de ocio y descanso y el suministro de agua en la agricultura (OSE 2).
- La investigación en medidas energéticas (OSE 5).
- La investigación en la industria alimentaria (OSE 7).

9.7. Producción y tecnología industrial.

Cubre la investigación sobre la mejora de la producción y tecnología industrial. Incluye la investigación de los productos industriales y sus procesos de fabricación, excepto en los casos en que forman una parte integrante de la búsqueda de otros objetivos (por ejemplo, defensa, espacio, energía, agricultura).

9.8. Estructuras y relaciones sociales.

Incluye la investigación sobre objetivos sociales, como los analizan en particular las ciencias sociales y las humanidades, que no tienen conexiones obvias con otros OSE. Este análisis engloba los aspectos cuantitativos, cualitativos, organizativos y prospectivos de los problemas sociales.

9.9. Exploración y explotación del espacio.

Cubre toda la investigación civil en el terreno de la tecnología espacial. La investigación análoga realizada en el terreno militar se clasifica en el OSE 13. Aunque la investigación espacial civil no está en general centrada sobre un objetivo específico, con frecuencia sí tiene un fin determinado, como el aumento del conocimiento general (por ejemplo la astronomía), o se refiere a aplicaciones especiales (por ejemplo, los satélites de telecomunicaciones).

9.10. Investigaciones financiadas con los fondos generales de las universidades.

Cuando se presentan los datos de los créditos presupuestarios públicos para I+D por "objetivo", esta categoría debe incluir, por convención, toda la I+D financiada a partir de subvenciones generales de los ministerios de educación, aunque en algunos países muchos de estos programas puedan presentarse con otros objetivos. Este acuerdo se ha adoptado debido al problema de la de obtención de datos adecuados y, de la necesidad de hacerlos comparables. Los países miembros deberían desglosar lo más detalladamente posible, el "contenido" de esta categoría por disciplina de la ciencia y la tecnología y, en los casos en que les sea posible, por objetivos.

9.11. Investigación no orientada.

Abarca todos los créditos presupuestarios que se asignan a I+D pero que no pueden atribuirse a un objetivo. Puede ser útil una distribución suplementaria por disciplinas científicas.

9.12. Otra investigación civil.

Cubre la investigación civil que no puede (aún) ser clasificada en una OSE particular.

9.13. Defensa.

Abarca la investigación (y el desarrollo) con fines militares. También comprende la investigación básica y la investigación nuclear y espacial financiada por los ministerios de defensa. La investigación civil financiada por los ministerios de defensa, por ejemplo, en lo relativo a meteorología, telecomunicaciones y sanidad, debe clasificarse en los OSE pertinentes.

10. Créditos Presupuestarios Públicos de I+D por objetivo socioeconómico.

Los créditos presupuestarios públicos de I+D comprenden la I+D financiada por la administración y ejecutada por centros públicos, así como la I+D financiada por la administración y ejecutada por los otros tres sectores nacionales (empresas, instituciones privadas sin fines de lucro, enseñanza superior) y también la ejecutada en el extranjero (incluidas las organizaciones internacionales).

Esta forma de análisis busca esencialmente calibrar las intenciones u objetivos de las administraciones públicas a la hora de comprometer fondos para I+D. La financiación de la I+D resulta así definida por quién financia (incluyendo los fondos públicos generales de las universidades) y puede tratarse de previsiones (presupuestos provisionales o créditos presupuestarios iniciales) o de datos retrospectivos (presupuesto final o gastos reales). Los datos de la financiación pública de I+D se extraen de los presupuestos nacionales en un momento concreto y están basados en sus propios métodos y terminología normalizados.

11. Investigadores.

Los investigadores son profesionales que trabajan en la concepción o creación de nuevos conocimientos, productos, procesos, métodos y sistemas y en la gestión de los respectivos proyectos.

12. Becarios de I+D o doctorado.

Los estudiantes postgraduados que desarrollan actividades de I+D deben ser considerados como investigadores e indicarse por separado. Si no constituyen una categoría diferente y son considerados como empleados, técnicos o investigadores, se suelen producir incoherencias en las series relativas a investigadores.

13. Personal de apovo.

Se compone de técnicos, personal asimilado y otro personal de apoyo.

13.1. Técnicos y personal asimilado.

Los técnicos y el personal asimilado son personas cuyas tareas principales requieren unos conocimientos y una experiencia de naturaleza técnica en uno o varios campos de la ingeniería, de las ciencias físicas y de la vida o de las ciencias sociales y las humanidades. Participan en la I+D ejecutando tareas científicas y técnicas que requieren la aplicación de métodos y principios operativos, generalmente bajo la supervisión de investigadores. El personal asimilado realiza los correspondientes trabajos bajo la supervisión de investigadores en ciencias sociales y humanidades. Sus tareas principales son las siguientes: realizar investigaciones bibliográficas y seleccionar el material apropiado en archivos y bibliotecas; elaborar programas para ordenador; llevar a cabo experimentos, pruebas y análisis; preparar los materiales y equipo necesarios para la realización de experimentos, pruebas y análisis; hacer mediciones y cálculos y preparar cuadros y gráficos; llevar a cabo encuestas estadísticas y entrevistas.

13.2. Otro personal de apoyo.

El otro personal de apoyo incluye los trabajadores, cualificados o no, y el personal de secretariado y de oficina que participan en la ejecución de proyectos de I+D o que están directamente relacionados con la ejecución de tales proyectos.

Personal de servicios científico-técnicos.

El personal de SCT es aquel que, si bien no investiga ni realiza trabajos de apoyo a la I+D se desempeña en servicios científico-técnicos, incluidos dentro del concepto de ACT (ver 1.).

15. Equivalencia a jornada completa (EJC).

La equivalencia a jornada completa (EJC) se calcula considerando para cada persona únicamente la proporción de su tiempo (o su jornada) que dedica a I+D (o ACT, cuando corresponda).

Un EJC puede entenderse como el equivalente a una persona-año. Así, quien habitualmente emplea el 30 % de su tiempo a I+D y el resto a otras actividades (tales como enseñanza, administración universitaria y orientación de alumnos) debe ser considerado como 0,3 EJC. Igualmente, si un trabajador de I+D con dedicación plena está empleado en una unidad de I+D 6 meses únicamente, el resultado es un EJC de 0,5. Puesto que la jornada (período) laboral normal puede diferir de un sector a otro, e incluso de una institución a otra, es imposible expresar la equivalencia a jornada completa en personas/año.

Teóricamente, la conversión en equivalencia a jornada completa debería aplicarse a todo el personal de I+D a tomar en consideración. En la práctica, se acepta que las personas que emplean más del 90% de su tiempo a I+D (por ejemplo, la mayor parte del personal empleado en laboratorios de I+D) sean consideradas con equivalencia de dedicación plena del 100% y de la misma forma, podrían excluirse todas las personas que dedican menos del 10% de su tiempo a I+D.

La I+D puede ser la función principal de algunas personas (por ejemplo, los empleados de un laboratorio de I+D), o sólo la función secundaria (por ejemplo, los empleados de un establecimiento dedicado a proyectos y ensayos). La I+D puede igualmente representar una fracción apreciable de la actividad en determinadas profesiones (por ejemplo, los profesores universitarios y los estudiantes postgraduados). Si se computaran únicamente las personas empleadas en centros de I+D, resultaría una subestimación del esfuerzo dedicado a I+D; por el contrario, si se contabilizaran todas las personas que dedican algún tiempo a I+D, se produciría una sobreestimación. Es preciso, por tanto, traducir a equivalencia a jornada completa (EJC) el número de personas que realizan actividades de I+D.

16. Investigación básica.

La investigación básica consiste en trabajos experimentales o teóricos que se emprenden fundamentalmente para obtener nuevos conocimientos acerca de los fundamentos de fenómenos y hechos observables, sin pensar en darles ninguna aplicación o utilización determinada.

17. Investigación aplicada.

La investigación aplicada consiste también en trabajos originales realizados para adquirir nuevos conocimientos; sin embargo, está dirigida fundamentalmente hacia un objetivo práctico específico.

18. Desarrollo experimental.

El desarrollo experimental consiste en trabajos sistemáticos basados en los conocimientos existentes, derivados de la investigación y/o la experiencia práctica, dirigidos a la producción de nuevos materiales, productos o dispositivos; al establecimiento de nuevos procesos, sistemas y servicios; o a la mejora sustancial de los ya existentes

19. ISSN e ISBN.

El ISSN (International Standard Serial Number / Número Internacional Normalizado de Publicaciones Seriadas) y el ISBN (International Standard Book Number / Número Internacional Normalizado de Libros) son códigos numéricos de identificación. El ISSN, un número de ocho cifras, identifica las publicaciones seriadas y el ISBN, un número de diez cifras, identifica los libros. Mientras que el ISSN es opcional (el editor no está legalmente obligado a utilizarlo), el ISBN sí es obligatorio si el libro en cuestión entra dentro del ámbito de aplicabilidad del ISBN.

CLASIFICACIÓN REVISADA DEL CAMPO DE LA CIENCIA Y TECNOLOGÍA (FOS, POR SUS SIGLAS EN INGLÉS) EN EL MANUAL FRASCATI⁶

Área 1. CIENCIAS NATURALES.

1.1 Matemáticas.

• Matemáticas pura, matemáticas aplicadas, estadísticas y probabilidad (esto incluye investigación sobre metodologías estadísticas, pero excluye investigación sobre estadísticas aplicadas, las cuales deben ser clasificadas bajo el área relevante de aplicación, por ejemplo, economía, sociología, etc.).

1.2 Ciencias de la información y computación.

• Ciencias de la computación, bioinformática y ciencias de la información (ver 2.2. desarrollo de hardware y 5.8. aspectos sociales).

1.3 Ciencias físicas.

Física atómica, molecular y química (la física de átomos y moléculas incluyendo colisión, interacción con radiación; resonancia magnética; efecto Moessbauer); Física de la materia condensada (incluyendo a la antiguamente denominada física del estado sólido, superconductividad); Física de campos y partículas; Física nuclear; Física de plasma y fluidos (incluyendo física de superficies; Óptica (incluyendo óptica laser y óptica cuántica), acústica; Astronomía (incluyendo astrofísica, ciencias del espacio.

1.4 Ciencias químicas.

 Química orgánica; Química inorgánica y nuclear; Química física; Ciencia de los polímeros, electroquímica (células secas, baterías, células llenas, corrosión de metales, electrólisis); Química de los coloides; Química analítica.

1.5 Ciencias de la tierra y ciencias ambientales relacionadas.

- Multidisciplinaridad de geociencias; Mineralogía, paleontología, geofísica y geoquímica; Geografía física; Geología; Vulcanología; Ciencias del medio ambiente (ver 5.7 aspectos sociales).
- Ciencias atmosféricas y meteorología; Investigación climática.
- Oceanografía, hidrología, recursos acuáticos.

1.6. Ciencias biológicas (medicas, véase 3 y agrícolas, véase 4).

- Biología celular, microbiología, virología; Biología molecular y bioquímica; Métodos de investigación bioquímica; Micología; Biofísica.
- Genética y herencia (ver 3 genética médica); Biología reproductiva (ver 3 aspectos médicos);
 Biología del desarrollo.
- Botánica.
- Zoología, ornitología, entomología, biología de las ciencias de la conducta.
- Biología marina, biología de agua dulce, limnología; Ecología; Conservación de la Biodiversidad;
- Biología (teórica, matemática, termal, criobiología, ritmos biológicos), biología evolutiva, otros tópicos biológicos.

1.70tras ciencias naturales.

⁶ http://www.oecd.org/dataoecd/36/44/38235147.pdf

⁶¹

Área 2. INGENIERÍA Y TECNOLOGÍA.

2.1 Ingeniería civil.

• Ingeniería civil; Ingeniería arquitectónica; Ingeniería de la construcción, ingeniería municipal y estructural; ingeniería de transporte.

2.2 Ingeniería eléctrica, ingeniería electrónica, ingeniería de la información.

• ingeniería eléctrica y electrónica, Control automático y robótica; Sistemas de control y automatización; Sistemas e ingeniería de comunicación; Telecomunicaciones; Arquitectura y hardware de computación.

2.3 Ingeniería mecánica.

- Ingeniería mecánica; Mecánica aplicada; Termodinámica.
- Ingeniería aeroespacial.
- Ingeniería relacionada a lo nuclear (ver 1.3 física nuclear).
- Ingeniería auditiva; Análisis de confiabilidad.

2.4 Ingeniería química.

• Ingeniería química (plantas, productos); Ingeniería de procesos químicos.

2.5 Ingeniería de materiales.

• Ingeniería de materiales; Cerámicas; Películas y revestimientos; Compuestos (incluyendo laminados, plásticos reforzados, cermets, fabricación de fibras sintéticas y combinaciones naturales, llenado de compuestos); madera y papel; Textiles incluyendo colorantes sintéticos, colores, fibras (ver 2.10 materiales a nanoescala, 2.9 biomateriales).

2.6 Ingeniería médica.

• Ingeniería médica; Tecnologías de laboratorio médico (incluyendo análisis de muestras de laboratorio, tecnologías de diagnóstico) [ver 2.9 Biomateriales características físicas de materiales vivos tales como los relacionados a implantes médicos, dispositivos, sensores)].

2.7 Ingeniería del medioambiente.

• Ingeniería medioambiental y geológica, geotécnicas; Ingeniería del petróleo (combustible, aceites); Energía y combustibles; Sensores remotos; Procesamiento de mineral y minería; Ingeniería marina; Construcción naval; Ingeniería oceanográfica.

2.8 Biotecnología medioambiental.

• Biotecnología medioambiental; Bioremediación, biotecnologías de diagnóstico (chip de ADN y dispositivos biosensores) en manejo medioambiental; biotecnología medioambiental relacionada a la ética.

2.9 Biotecnología industrial.

 Biotecnología industrial; Tecnologías de bioprocesamiento (procesos industriales dependientes de agentes biológicos para conducir los procesos), biocatalisis, fermentación; Bioproductos (productos que son manufacturados usando materiales biológicos como materia prima para alimentación de procesos), biomateriales, bioplásticos, biocombustibles, Químicos brutos y finos bioderivados, materiales nuevos bioderivados.

2.10 Nanotecnología.

- Nanomateriales (producción y caracterización).
- Nano procesos (aplicaciones en la nanoescala) (ver 2.9 Biomateriales).

2.11 Otras ingenierías y tecnologías.

- Alimentos y bebidas.
- Otras ingenierías y tecnologías.

Área 3. CIENCIAS MÉDICAS.

3.1 Medicina básica.

Anatomía y morfología [ver 1.6 ciencias de las plantas (Botánica)]; Genética humana; Inmunología;
 Neurociencias (incluyendo psicofisiología); Farmacología y farmacia; Química medica; Toxicología,
 Fisiología (incluyendo citología); Patología.

3.2 Medicina clínica.

• Andrología; Ginecología y obstetricia; Pediatría; Sistemas cardiovascular y cardíaco; Enfermedades vasculares periféricas; Hematología; Sistema respiratorio; Medicina de emergencia y cuidados críticos médicos; Anestesiología; Ortopedia; Cirugía; Radiología, visualización médica y medicina nuclear; Transplantes; Odontología, medicina y cirugía oral; Dermatología y enfermedades venéreas; Alergias; Reumatología; Endocrinología y metabolismo (incluyendo diabetes, hormonas); Gastroenterología y hepatología; Urología y nefrología; Oncología; Oftalmología; Otorrinolaringología; Psiquiatría; Neurología clínica; Geriatría y gerontología; Medicina interna y general; Otras disciplinas de medicina clínica; medicina complementaria e integrativa (sistemas de práctica alternativa).

3.3 Ciencias de la salud.

- Servicios y cuidados de ciencias de la salud (incluyendo administración hospitalaria, financiamiento a cuidados de la salud); Política de salud y servicios.
- Lactancia: Nutrición, dietética.
- Salud pública y medioambiental; Medicina tropical; Parasitología; Enfermedades infecciosas; Epidemiología.
- Salud ocupacional; Ciencias deportivas y cultura física.
- Ciencias biomédicas sociales (incluyendo planificación familiar, salud sexual, psicooncología, efectos políticos y sociales de la investigación biomédica); Ética médica; Abuso de sustancias.

3.4 Biotecnología médica.

Biotecnología relacionada a la salud; Tecnologías que involucran la manipulación de células, tejidos, órganos o el organismo completo (reproducción asistida); Tecnologías involucrando la identificación del funcionamiento del ADN, proteínas y enzimas y como estas influyen en la aparición de enfermedades y el mantenimiento de la buena salud/del bienestar [diagnósticos e intervenciones terapéuticas basados en genes (farmacogenómica, terapéutica basada en genes)]; Biomateriales (como los relacionados a implantes médicos, dispositivos, sensores); Biotecnología médica relacionada a la ética.

3.5 Otras ciencias médicas.

- Ciencia forense.
- Otras ciencias médicas.

Área 4. CIENCIAS AGRÍCOLAS.

4.1 Agricultura, silvicultura, pesca.

• Agricultura; Silvicultura, Pesca; Ciencia de los suelos; Horticultura, viticultura; Agronomía, reproducción vegetal y protección vegetal (ver 4.4 biotecnología agrícola).

4.2 Zootecnia y ciencia de los productos lácteos.

- Zootecnia y ciencia de los productos lácteos (ver 4.4 biotecnología agrícola).
- Ganadería; Animales domésticos.

4.3 Ciencia veterinaria.

4.4 Biotecnología agrícola.

 Biotecnología agrícola y biotecnología alimenticia; Tecnología de organismos modificados genéticamente (cultivos y ganadería), clonación de ganado, selección asistida por marcadores, diagnósticos (chips de ADN y dispositivos biosensores para la detección temprana/segura de enfermedades); Tecnologías de producción animal de biomasa; Biofarmacología; Biotecnología agrícola relacionada a la ética.

4.5 Otras ciencias agrícolas.

Área 5. CIENCIAS SOCIALES.

5.1 Psicología.

- Psicología (incluyendo relaciones entre humanos y maquinas).
- Psicología especial (incluyendo terapia para aprendizaje, lenguaje, audición, visión y otras discapacidades físicas y mentales).

5.2 Economía y negocios.

- Economía; Econometría; Relaciones industriales.
- Administración y negocios.

5.3 Ciencias de la educación.

- Educación general (incluyendo entrenamiento, pedagogía, didáctica).
- Educación especial (para personas "superdotadas", para quienes tienen discapacidades de aprendizaje).

5.4 Sociología.

- Sociología; Demografía; Antropología; Etnología.
- Materias sociales (estudios de mujeres y de género; Investigación social; Estudios de Familia; Trabajo social).

5.5 Derecho.

• Derecho, criminología, derecho penal.

5.6 Ciencias políticas.

• Ciencias políticas; Administración pública; Teoría de la organización.

5.7 Geografía social y económica.

• Ciencias del medioambiente (aspectos sociales); Geografía cultural y económica; Estudios urbanísticos (planificación y desarrollo); Planificación del transporte y aspectos sociales del transporte (ver 2.1 ingeniería del transporte).

5.8 Comunicaciones y medios.

 Periodismo; Ciencia de la información (aspectos sociales); Ciencia de la bibliotecología; Medios y comunicación socio cultural).

5.9 Otras ciencias sociales.

- Ciencias sociales, interdisciplinaridad.
- Otras ciencias sociales.

Área 6. HUMANIDADES.

6.1 Historia.

• Historia (ver 6.3 historia de la ciencia y tecnología, ver respectivos encabezados para la historia de las ciencias específicas); Arqueología.

6.2 Lenguaje y literatura.

• Estudios generales de lenguaje; Lenguajes específicos; Estudios generales de literatura; Teoría de la literatura; Literaturas específicas; Lingüística.

6.3 Filosofía, ética y religión.

- Filosofía, historia y filosofía de la ciencia y la tecnología.
- Éticas (excepto éticas relacionadas a sub-áreas específicas); Teología; Estudios religiosos.

6.4 Artes (arte, historia del arte, realización artística, música).

- Artes, historia del arte, diseño arquitectónico, estudios de realización artística (musicología, ciencia del arte dramático, dramaturgia); estudios de tradiciones y leyendas populares.
- Estudios de Cine, Radio y Televisión.

6.5 Otras humanidades.